Real Time
Programming

Parallel Programming

Gordon Johnson
K1451760

Real Time Programming K1451760

Table of Contents

0] (T L1y AT o TP 2
Serial IMPIEMENTALION ..o 3
AlGOTTENM / SEFATEQY ...t 3
[T o] L= =T 01 =1 o] o PSSR UR 5
(08 1T BT To | - 1o SRR 10
ST | OSSR 11
PEITOMMIANCE ...t b bttt b e s e b e et et nbe b enes 14
Study of the potential for paralleliSation..............ccociiiiiiici 15
SEQUENTIAL SECHIONiviiie e e s be e ae e teeeenre e 15
Potential Parallel SECLIONS...........ooiiiiie e 15
Critical sections and points of Synchronisation..............ccccccevveviiie i 16
Potential issues of 10ad DAIANCINGcoviiiiiii e 16
(€] [T o T @] o T=T - A o] SR 16
OPENMP IMPIEMENTALION......oiiiiiiie ettt sbe et anee s 17
Algorithm / Strategy / IMpIeMENTationcccooiiiiiiiniriee s 17
RESUIES ...ttt b et Rttt na e 20
= (0] = o SRR 23
MPLIMPIEMENTALIONeivieieice ettt se e e sre e te e e e saaenas 26
Algorithm / Strategy / Implementation ..o 26
RESUITS ...ttt bt bbbt b bbbt ns 31
e (0] €= o SR URSPPR 34
Hybrid Implementation...........ooi it 37
Algorithm / Strategy / Implementation ..o 37
ST | OSSR 37
PEITOMMIANCE ...t b bbbt b e b e e bt ne e be e b nnes 40
Y= 11U 4o] o PSSR 43
R (=] 1] 4 (00T PRSPPI 45

GORDON JOHNSON 1

Real Time Programming K1451760

Introduction

| am going to create a prey/predator simulation, using cellular automata, to demonstrate the
performance and behaviours of different parallel programming techniques. My goal is to
deliver four implementations, in one application. To achieve this, an options menu will need to
be implemented, this application will be coded in C++. A serial implementation, will be
implemented to provide a base line. An OpenMP implementation, will be used to demonstrate
the multi-threaded and an MPI implementation, will be used for multi-processor
demonstrations. Finally, a hybrid implementation, will make use of both OpenMP and MPI.
This will be done using ASCI text, this provides the application the opportunity to have
customisation once launched. SDL, will be used to provide a graphical output for the
simulation. This will provide an overhead on performance, so an option will be available to
exclude this when testing.

Performance testing, will be conducted on each implementation, using grid sizes 100x100,
1,000x1,000 and 10,000x10,000. The first two grid sizes, will be tested over 10,000 iterations,
with the final grid size being tested over 1,000 iterations. The OpenMP, will be tested using 2,
4, 6 and 8 threads. MPI, will be tested using 2, 4, 6 and 8 processes. The Hybrid, will be tested
using (threads, processes), these will be performed using the following strategy (2, 2), (4, 4),
(6, 2) and (2, 6).

The following, presents the specification of the device used, for all the performance tests:

CPU: Intel® Core™ 17-7700HQ Quad-Core Processor with Hyper-Threading 2.8GHz /
3.8GHz (Base/Turbo)

SSD: 512GB SSD (PCle M.2)

Memory: 16GB dual-channel onboard memory (DDR4, 2400MHz)
GPU: NVIDIA® GeForce® GTX 1060 (6GB GDDR5 VRAM)
OS: Windows 10 (64-Bit)

GitHub: https://qgithub.com/LordGee/prey pred

Box: https://kingston.box.com/s/cp9oauh5gcui3dy4i6e5987Ivxxfl3v3j

YouTube: https://youtu.be/9KmIm2TVGWq

GORDON JOHNSON 2

https://github.com/LordGee/prey_pred
https://kingston.box.com/s/cp9oauh5qcui3y4j6e5g87lvxxfl3v3j
https://youtu.be/9KmIm2TVGWg

Real Time Programming K1451760
Serial Implementation

Algorithm / Strategy

The first priority, is to find the best process, to manage each cell within the grid, identifying
the important attributes and how they are going to be represented. To do this a class is created
called Cell, with two attributes that are both initialised to zero. These attributes are Type and
Age. The attribute Type, indicates whether the cell is Prey, Predator or Empty. The mechanics
for Type, are as follows:

e -1 =Predator
e 0=Empty
e 1=Prey

The Age attribute, will be used to store the incremental age of the cell. Unless the cell is empty,
then it will remain at zero value.

The main loop, for the simulation, will have to iterate through every cell within the grid, whilst
analysing all eight neighbouring cells. To accomplish this, the use of four ‘if* statements will
be used, to check if either the x or y coordinates, are out of bounds. If so, they will change the
value to be checked to the opposite side of the grid, for example, if the y index returns a -1
value, then the overall height value will be added to this, to provide the highest possible index
that y could be. As each neighbouring cell is checked, if the type of cell is not empty, then the
type is accumulated within a variable, for later use. Also, when identifying if the cell is prey or
predator, a check is performed to determine whether they are of breeding age, this is
accumulated in an age variable.

Once all the neighbouring checks have been completed, it is then time to check what the new
state of the cell will be. To accomplish this, the check statements will be broken down into
three categories, depending on their current type, e.g. manage prey, manage predator and
manage empty. These three checks, will contain additional ‘if” statements, to determine if any
of the set rule conditions have been met.

For a given cell containing a fish,

Fish live for 10 generations

If >= 5 neighbours are sharks, fish dies (shark food)
If all 8 neighbours are fish, fish dies (overpopulation)
If a fish does not die, increment age

GORDON JOHNSON 3

Real Time Programming K1451760

For a given cell containing a shark,

Sharks live for 20 generations

If >= 6 neighbours are sharks, and fish neighbours = 0, then the shark dies (starvation)
A shark has a 1/32 (.031) chance of dying due to random causes

If a shark does not die, increment age

For a given empty cell,

If there are >= 4 neighbours of one species, with >= 3 of them of breeding age and there
are <= 4 of the other species, then create a species of that type.

The new state of the cell, will be recorded into a temporary grid. This, will be an independent
array, of equal size to the actual grid. This is due to the main loop having not concluded through
all cells yet, but the remaining checks still need to be based upon the original states. After all
cells have been iterated through, the temporary grid containing the new states, will be copied
back to the main grid, so the process can start again for the next iteration.

GORDON JOHNSON 4

Real Time Programming K1451760

Implementation

As discussed in the strategy, the need for an implementation of an object to manage each
individual cell was created. In hindsight, this could have been simplified in a struct as opposed
to a class, eliminating the need to declare the attributes and operations as public.

class Cell {

public:
int type;
int age;
public:
Cell() {
type = 0;
age = 0;
¥
¥

When a new instance of the simulator is created, the constructor initialises the required
variables and sets up appropriate size vector arrays, for both the main and temporary grid. This
constructor, will persist for every implementation, as the parent constructor.

Simulator::Simulator(int width, int height, int preyPercent, int predPercent, int ran-
domSeed, int threads, int proc) :
width(width), height(height), seed(randomSeed), numThreads(threads), numProc(proc) {
prey = (float)preyPercent / 100.0f;
pred = (float)predPercent / 100.0f;
mainGrid = std::vector<std::vector<Cell>>(width);
copyGrid = std::vector<std::vector<Cell>>(width);
for (int x = 0; x < width; x++) {
mainGrid[x] = std::vector<Cell>(height);
copyGrid[x] = std::vector<Cell>(height);
}
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
mainGrid[x][y].type = 0;
mainGrid[x][y].age = 0;

GORDON JOHNSON 5

6 Real Time Programming K1451760

After the constructor, the next operation populates the main grid with starting values. The
values entered are set randomly, using a predefined seed for the random generator and

predefined percentages of prey and predator.

void Serial::PopulateGrid() {
srand(seed);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
float random = (float)(rand()) / (float)(RAND_MAX);
if (random < prey) {
mainGrid[x][y].type = 1;
mainGrid[x][y].age = 1;
} else if (random < prey + pred) {
mainGrid[x][y].type = -1;
mainGrid[x][y].age = 1;
} else {
mainGrid[x][y].type = 0;
mainGrid[x][y].age = 0;

Once the main array has been generated, there are three entry points to the main loop,
depending type of display the user option chooses. The three options are, graphical output, or
no display. The code below, is for ASCI statistics, it loops through the simulator and outputs

the statistics, to the console window.

void Serial::RunSimNoDraw(const int COUNT) {
int counter = 0;
clock t t1, t2;
float timer;
while (counter < COUNT) {
t1l = clock();
deadPrey = 0, deadPred
livePrey = 0, livePred
UpdateSimulation();
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
if (mainGrid[x][y].type > 0) {
livePrey++;
} else if (mainGrid[x][y].type < 0) {
livePred++;
} else {
empty++;
}

9;
0, empty = 0;

}
}
t2 = clock();
timer = (float)(t2 - t1) / CLOCKS_PER_SEC;
UpdateStatistics(timer, counter, livePrey, livePred, empty,

deadPrey, deadPred);
counter++;

GORDON JOHNSON 6

Real Time Programming K1451760

Within the main loop, the following operation is called. This checks the state of each cell and
updates the simulator. The first step, is to check all neighbouring objects of the given cell. The
cell, depending on its current state, is then checked to determine its new state.

void Serial::UpdateSimulation() {
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
// loop each neighbouring cell
// check neighbouring cell states
// Manage Prey
// Check new state of cell
// Manage Predator
// Check new state of cell
// Manage Empty
// Check new state of cell

The following, initialises new variables to perform a count on the neighbouring cells,
depending on their state. This is done, by using a double loop, which provides a value either -
1, 0 or 1. If both loop values are set to 0, then this is the current cell and is ignored. New x and
y values, are created by adding x + i, and y + j. The new value is then checked, to ensure that
it is not out of bounds of the grid. If it is, then the value is recalculated to the other side of the
grid. For example, ify + j = —1,theny = y + j + height. So, if height were to equal
100, then this will result in the new y being the last index in the grid (0 + —1) + 100 = 99.
If the new grid index is a prey or predator, then the relevant variable is accumulated, whilst
also checking if that type is greater or equal to the breeding age. This is also accumulated to its
respective variable.

int preyCount = @, preyAge = 0, predCount = @, predAge = 0;
for (int i = -1; i < 2; i++) {
for (int j = -1; j < 2; j++) {
if (1(i==08&& j==20)) {
int newX = x + i, newY =y + Jj;
if (newY < @) { newY = newY + height; }
if (newX < @) { newX = newX + width; }
if (newY >= height) { newY = newY - height; }
if (newX >= width) { newX = newX - width; }
if (mainGrid[newX][newY].type > 0) {
preyCount++;
if (mainGrid[newX][newY].age >= PREY_BREEDING) {
preyAge++;
}
} else if (mainGrid[newX][newY].type < 0) {
predCount++;
if (mainGrid[newX][newY].age >= PRED_BREEDING) {
predAge++;
}

GORDON JOHNSON 7

8 Real Time Programming K1451760

The following three operations, manage the new state of each cell. Depending on the cells
current type, the new values are created and placed in a temporary grid. This ensures, the
remainder of the simulation update, is based on the current values, not the new values.

if (mainGrid[x][y].type > 0) {

//manage prey

if (predCount >= 5 || preyCount == 8 || mainGrid[x][y].age > PREY_LIVE) {
copyGrid[x][y].type = 0;
copyGrid[x][y].age = 0;
deadPrey++;

} else {
copyGrid[x][y].type = mainGrid[x][y].type;
copyGrid[x][y].age = mainGrid[x][y].age + 1;

This manages the predator cells, by performing a check based on the rules for if the predator
dies. If any of these conditions are true, then the cell is set to a zero value, this indicates the
new cell type is empty. As before, the predator remains as the type and the age is incremented.

else if (mainGrid[x][y].type < 0) {

// manage predator

float random = (float)(rand()) / (float)(RAND_MAX);

if ((predCount >= 6 && preyCount == @) || random <= PRED_SUDDEN_DEATH ||

copyGrid[x][y].age > PRED_LIVE) {

copyGrid[x][y].type = 0;
copyGrid[x][y].age = 0;
deadPred++;

} else {
copyGrid[x][y].type = mainGrid[x][y].type;
copyGrid[x][y].age = mainGrid[x][y].age + 1;

GORDON JOHNSON 8

9 Real Time Programming K1451760

The final checks, are to manage the current empty cells, dependant on the surrounding cell
types and age count, potentially a new type, either prey or predator, could be generated. If
neither condition is met, then the cell remains empty.

else {

// man
if (pr

} else

} else

age empty space

eyCount >= NO_BREEDING && preyAge >= NO_AGE &&
predCount < NO_WITNESSES) {

copyGrid[x][y].type = 1;

copyGrid[x][y].age = 1;

if (predCount >= NO_BREEDING && predAge >= NO_AGE &&
preyCount < NO_WITNESSES) {

copyGrid[x][y].type = -1;

copyGrid[x][y].age = 1;

{

copyGrid[x][y].type = ©;

copyGrid[x][y].age = ©;

Finally, once the main update loop has concluded, the temporary array is then copied, cell by
cell, into the main array, ready for the next iteration.

for (int x =

for (i

}

0; X < width; x++) {
nt y = 0; y < height; y++) {
mainGrid[x][y] = copyGrid[x][y];

GORDON JOHNSON 9

Real Time Programming K1451760

Class Diagram

i

GORDON JOHNSON 10

K1451760

Real Time Programming

Results
After some trial and error, the simulator worked as desired. The screen shots, provided below,

were taken at certain iteration counts, to demonstrate the evolving simulation.

50 Iterations

100 Iterations

250 Iterations

1
11

GORDON JOHNSON

Real Time Programming K1451760

500 Iterations

1000 Iterations

2500 iterations

1
GORDON JOHNSON 12

Real Time Programming K1451760

5000 Iterations

10000 Iterations

1
GORDON JOHNSON 13

Real Time Programming K1451760

Performance
For this serial implementation, the following tests were conducted.

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
Average Speed per 0.0005381 0.0951833 8.722674
Iteration

Average Speed

10

1

B 100x100 m 1000x1000 m 10000x10000

As can be seen by the average iteration speed, the smaller grid sizes present a reasonable
average time. However, for the largest grid size, each iteration is taking over 8 seconds to
complete.

Serial 1000x1000 Serial 10000x10000

0.14 12
0.12 10
0.1 AL
8
0.08
6

0 2000 4000 6000 8000 10000 12000 0 200 400 600 800 1000 1200

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds
taken, indicative of a decline in performance over time.

1
GORDON JOHNSON 14

Real Time Programming K1451760
Study of the potential for parallelisation

Sequential Section

From executing the application, the Main method, App and Setup classes, will remain
sequential. Adding parallelisation to these areas, will provide no performance improvements
to the application, as they are mainly user dependent. Any display methods or file writing
should also remain sequential, this will ensure no duplicate outputs are displayed and like the
previous methods, will provide no benefit to the simulation process of the application.

Potential Parallel Sections
The main three sections, that should be targeted for parallelisation, are all within the main
Update Simulation loop.

void Serial::UpdateSimulation() {
/* Target for Parallelisation */
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
// Prepare temporary grid
}

}
/* Target for Parallelisation */
for (int x = 0@; x < width; x++) {
for (int y = 0; y < height; y++) {
// loop each neighbouring cell
// check neighbouring cell states
// Manage Prey
// Check new state of cell
// Manage Predator
// Check new state of cell
// Manage Empty
// Check new state of cell
}
}
/* Target for Parallelisation */
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
// Copy temporary grid back to main
}

Additional consideration during the MPI implementation, is going to be required when
performing the check of the neighbouring cells. Each process, will need to be prepared, prior
to going into the evaluation loop. This ensures sufficient values are held, to enable all the
neighbouring states to be checked.

1
GORDON JOHNSON 15

Real Time Programming K1451760

Critical sections and points of synchronisation

In all instances of parallelisation, using a barrier will ensure synchronisation, for example, prior
to the evaluation loop. It will be important to ensure all processes contain the relevant
information, especially in the MPI implementation, ready for checking the neighbouring states,
particularly if a neighbouring state is managed by a different process.

In addition, the OpenMP implementation will require a barrier, before the temporary grid is
copied back to the main grid. This is to ensure that all threads, have evaluated all states, before
continuing.

Potential issues of load balancing

There are two different methods that can be used to manage load balancing, these are Static
and Dynamic. As highlighted (Manekar et al., 2012), the dynamic approach adds a greater level
of complexity, making the process more unpredictable and adding a greater overhead to the
application. Although this approach, could potentially improve overall performance due to the
workload being allocated at run time, | have opted for the static approach initially, so the
workload is allocated within the code and is known at compile time. This will also allow easier
debugging of the application and ensure stability during the simulation process. If time allows,
| will attempt a dynamic approach, to potentially improve performance and reusability further.

Global Operations
The only section targeted for parallelisation, where global variables will become an issue, is a
loop that is only relevant in one selection of user defined options, when the display mode is set
to “ASCI Statistics Only. The variables, will be used to accumulate the current statistics, so
they can be displayed accurately.

livePrey = 0, livePred = 0, empty = 0;

UpdateSimulation();
#pragma omp parallel num_threads(numThreads) shared (livePrey, livePred, empty)

#pragma omp for reduction (+: livePrey, livePred, empty)
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {

if (mainGrid[x][y].type > @) {
livePrey++;

} else if (mainGrid[x][y].type < 0) {
livePred++;

} else {
empty++;

}

Fortunately, some of the variables, e.g. the Main Grid array, that are global, won’t be affected
from the parallel process. This is because access to them is determined by the local variables
within the loop, that determine the index of the array element. This ensures, that only one thread
IS accessing that shared element of the array, at any one iteration.

1
GORDON JOHNSON 16

Real Time Programming K1451760
OpenMP Implementation

Algorithm / Strategy / Implementation

For the OpenMP implementation, there was no need to change the algorithm itself compared
to the Serial implementation. Upon evaluation of the main class, there were five main sections
of code that I felt would benefit from the OpenMP implementation.

The first was the Populate Grid method. Although this does not affect the simulation, as it is
only ever called once per execution, | felt that this would speed up the initial start-up of the
simulation, as this needs to be actioned before it can begin.

The next three targeted sections, are all within the main Update Simulation loop, indication of
areas to be targeted for OpenMP can be seen in the comments below.

void Serial::UpdateSimulation() {
/* Target for OpenMP */
for (int x = @; x < width; x++) {
for (int y = 0; y < height; y++) {
// Prepare temporary grid
}

}
/* Target for OpenMP */
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
// loop each neighbouring cell
// check neighbouring cell states
// Manage Prey
// Check new state of cell
// Manage Predator
// Check new state of cell
// Manage Empty
// Check new state of cell
}
}
/* Target for OpenMP */
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
// Copy temporary grid back to main
}

1
GORDON JOHNSON 17

Real Time Programming K1451760

The first section is to prepare the temporary grid, ready to store new information.

#pragma omp parallel num_threads(numThreads)

{
#pragma omp for
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
copyGrid[x][y].type = ©;
copyGrid[x][y].age = 0;

Evaluating the next loop for global and local variables, revealed only one issue, which was
within the set random value operation. Initially this was inside the loop, but this presented
undesirable results. Next, | tried to take this outside the declaration for OpenMP as a global
declaration, this did not work, as this type of method cannot be shared. Finally, | added this,
just after the OpenMP declaration, but just before the OpenMP for loop.

#pragma omp parallel num_threads(numThreads)

{
srand(time(NULL));
#pragma omp for
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
// Evaluate neighbours

}

Other variables that are used within this section of code, are local and declared within the loop.
Regardless, they needed to be reset throughout each iteration, so this presented no need for
concern.

The final loop within this section of code, is to copy the temporary grid details back into the
main grid. However, for peace of mind, an OpenMP Barrier, was included before this loop
starts, ensuring all threads have completed the previous evaluation loop before starting.

#pragma omp barrier
#pragma omp parallel num_threads(numThreads)
{
#pragma omp for
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
mainGrid[x][y] = copyGrid[x][y];

}

1
GORDON JOHNSON 18

Real Time Programming K1451760

The final targeted loop, is only relevant in one situation of a user defined option, that is when
the display mode is set to “ASCI Statistics Only. This section, demonstrates how global
variables can be used and shared between threads, to provide an accumulated result.

livePrey = 0, livePred = 0, empty = 0;
UpdateSimulation();
#pragma omp parallel num_threads(numThreads) shared (livePrey, livePred, empty)
{
#pragma omp for reduction (+: livePrey, livePred, empty)
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
if (mainGrid[x][y].type > @) {
livePrey++;
} else if (mainGrid[x][y].type < @) {
livePred++;
} else {
empty++;
¥

1
GORDON JOHNSON 19

Real Time Programming K1451760

Results
Screen shots, provided below, are taken at certain iteration counts, to demonstrate the evolving

simulation.

50 Iterations

Releas| * ALY vs PREDAIOR Simulation

100 Iterations

® ' DAGameProjects\UniversityProjects\prey_pred\PreyPredator\bin\Releas| * _PALY v PREDATON Serudasion
i .

][5 PREY vs PREDATOR Simutation

250 Iterations

GORDON JOHNSON 20

Real Time Programming K1451760

500 Iterations

Jeas| ™ PREY vs PREDATOR Simulation

1000 [terations

2500 iterations

"D

GORDON JOHNSON 21

Real Time Programming K1451760

5000 Iterations

15 datonbi | = PREY v PREDATOR Sienulation

10000 Iterations

% DAGameProj iversityProj PreyPredator\bin\Releas| = PREY v PREDATOR Sinulation

1
GORDON JOHNSON 22

Real Time Programming K1451760

Performance

For the OpenMP implementation, the following tests were conducted, as presented in the
introduction of this report. As a baseline comparison, the previous Serial Implementation
results, are below.

OpenMP Implementation
Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
2X Threads 0.0002973 0.0493534 4547463
4x Threads 0.0001508 0.0295983 2.490935
6Xx Threads 0.0001213 0.0229262 2.008494
8x Threads 0.0002027 0.0187689 1.723995

Serial Implementation Results (Baseline)

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
Average Speed per 0.0005381 0.0951833 8.722674
Iteration

As can be seen by these results, using just 2x Threads within the OpenMP implementation,
provides almost double the speed to the application. Providing the simulation with x4 threads,
provides the largest increase in acceleration, compared to all other options. Providing x6 and
x8, both provided minor improvements respectively, but still show better performance than the
previous.

1
GORDON JOHNSON 23

Real Time Programming K1451760

AVERAGE SPEED
AVERAGE SPEED

mx2Threads Mx4Threads ®Wx6Threads ®x8Threads
mx2 Threads mx4 Threads mx6 Threads x8 Threads

2
& 2
g g
8 3
8

0002027

100100

1000X1000

100x100 Grid Size (Average Speed) 1000x1000 Grid Size (Average Speed)

AVERAGE SPEED

mx2Threads ®x4Threads mx6 Threads x8 Threads

10000X10000

10000x10000 Grid Size (Average Speed)

GORDON JOHNSON 24

Real Time Programming K1451760

The following graphs, show performance over time.

1000 x 1000

0.09
0.08
0.07
0.06
0.05
0.04
0.02
0.01

324

647

970
1293
1616
1939
2262
2585
2908
3231
3554
3877
4200
4523
4846
5169
5492
5815
6138
6461
6784
7107
7430
7753
8076
8399
8722
9045
9368
9691

x2 Threads x4 Threads x6 Threads x8 Threads

1000x1000 Grid Size (Performance per Iteration)

10000 x 10000

5
— . N Y W S ™ T R Y N W N T
4
3
qu4nu,nﬂl | sk i AL A - ey M A At
2
1
0
Uy MMNS =DM N M SN e NOM NS =DM =N MmN
mu:Omhomr\oqhoghHtrraﬂﬁrw-ctrmﬁmooﬂmw
™ e e NN M MM - T o Ty TR T V=TT V- I L S S I T T« I I+
x2 Threads x4 Threads x6 Threads x8 Threads

10000x10000 Grid Size (Performance per Iteration)

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds
taken, indicative of a decline in performance over time

Also noted, that the 100x100 grid with x8 threads, shows a decrease in performance. This could
have been an issue with processor usage at the time of testing and does not reflect in the other
tests with this amount of threads.

1
GORDON JOHNSON 25

Real Time Programming K1451760

MPI Implementation

Algorithm / Strategy / Implementation

Due to the original design of implementing the project into a single application, as opposed to
four, MPI1 needed to be implemented regardless, at the application point of entry. The main
function of this, will need to be executed, regardless of whether MPI is being used.

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
InfoMPI* info = new InfoMPI;
MPI_Comm_size(MPI_COMM_WORLD, &info->numProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &info->rank);
App* app = new App(*info);
delete app;
delete info;
MPI_Finalize();
system("PAUSE");
return 0;

Extra consideration needed to be taken throughout the setup process, to ensure the master
process took care of the user selection process. Whilst at the same time, ensuring the selection
is passed to all other processes. . 2‘ 3‘ "‘ 5‘ R

Process 0

In the main simulation, it was important to decide early, how to best
split the data being processed across two or more processes. The main
grid, needed to be split either in the x or y direction. For this, | chose to
split across the y (height) value, as seen in the diagram to the right.
Process 0, will take on the role of the master process and will process
everything outside of the main simulation, which includes managing
the statistic and graphics to be displayed. An extra check, is needed
before the simulation can start, this is to determine if the height value will evenly split between
the selected number of processes. If this is not the case, then the value will be rounded down,
to the next even split value.

-
B O WM NV AWNRE O

1
GORDON JOHNSON 26

Real Time Programming K1451760

The first method, to manage the split of the grid, is to populate the grid with its initial states.
For this, the master process takes care of the initial declaration of states, depending on which
process region y is currently at, it will send that information to the appropriate processors grid.

void MsMPI::PopulateGrid() {

const int contributionY = abs(height / info.numProcs);

int processorCounter = 1;

for (int x = 0@; x < width; x++) {

for (int y = 0; y < height; y++) {
// Only the master manages the initial declaration
// of each cell state
if (info.rank == 0) {
// allocate random cell state

}

// determine if the y value has exceeded the current
// processor split
if (y >= contributionY * (processorCounter + 1)) {
if (processorCounter != info.numProcs - 1) {
processorCounter++;

}
}

// If within the current processor copy the master cell
// to the appropriate processor
if (y >= contributionY * processorCounter &&
y < contributionY * (processorCounter + 1)) {
if (info.rank == 0) {
MPI_Send(&mainGrid[x][y], 2, MPI_INT,
processorCounter, y, MPI_COMM_WORLD);

}
if (info.rank == processorCounter) {
MPI_Recv(&mainGrid[x][y], 2, MPI_INT,
0, y, MPI_COMM_WORLD, &status);
}

}
}

// at the end of each y iteration reset processor to 1
processorCounter = 1;

Once complete, the master process will store all the initial states, but going forward will only
mange its own starting section. For example, if the height of the grid was 100 and there are 4
active processes, then the management of the y value would be as follows

e Process0—(0-24)

e Process 1—(25-49)
e Process 2 — (50 - 74)
e Process 3—(75-99)

1
GORDON JOHNSON 27

Real Time Programming K1451760

The next step, was to ensure that each process contains the latest °3.223°°.° 7~
neighbouring states. As each process is only managing a split of section,

an addition loop is implemented, to copy the missing information to the
relevant process (see image on right).

Process 0
Sent to Process 1

Including this, additional two rows of information in each process, will
eliminate the need to apply any amendments, when it comes to checking
the neighbouring states.

- B
RO VKN EWNRO

for (int x = 0; x < width; x++) {
if (info.rank == 0) {
MPI_Send(&mainGrid[x][@], 2, MPI_INT,
info.numProcs - 1, x, MPI_COMM_WORLD);
MPI_Recv(&mainGrid[x][height - 1], 2, MPI_INT,
info.numProcs - 1, x + width, MPI_COMM_WORLD, &status);

}
else if (info.rank == info.numProcs - 1) {
MPI_Send(&mainGrid[x][height - 1], 2, MPI_INT,
@, X + width, MPI_COMM _WORLD);
MPI_Recv(&mainGrid[x][@], 2, MPI_INT,
0, X, MPI_COMM_WORLD, &status);
if (info.rank != info.numProcs - 1) {

MPI_Send(&mainGrid[x][(contributionY * (info.rank + 1)) - 1], 2,
MPI_INT, info.rank + 1, X, MPI_COMM_WORLD);

MPI_Recv(&mainGrid[x][(contributionY * (info.rank + 1))], 2,
MPI_INT, info.rank + 1, x, MPI_COMM_WORLD, &status);

}
if (info.rank != 0) {
MPI_Send(&mainGrid[x][contributionY * info.rank], 2,
MPI_INT, info.rank - 1, x, MPI_COMM_WORLD);
MPI_Recv(&mainGrid[x][(contributionY * info.rank) - 1], 2,
MPI_INT, info.rank - 1, x, MPI_COMM_WORLD, &status);

1
GORDON JOHNSON 28

Real Time Programming K1451760

Before going into the main update loop, a barrier is applied to ensure all processes have sent
their updated values, to the relevant other process. The main update loop itself, remains the
same as the other implementations, with the exception that the for loop, only considers the y
range related to the process that is going through.

MPI_Barrier(MPI_COMM_WORLD);
for (int x = @; x < width; x++) {
for (int y = contributionY * info.rank;
y < contributionY * (info.rank + 1); y++) {
// loop each neighbouring cell
// check neighbouring cell states
// Manage Prey
// Check new state of cell
// Manage Predator
// Check new state of cell
// Manage Empty
// Check new state of cell

The new states, are then copied to the main grid, taking into consideration each process has a
unique y range.

for (int x = 0; x < width; x++) {
for (int y = contributionY * info.rank;
y < contributionY * (info.rank + 1); y++) {
mainGrid[x][y] = copyGrid[x][y];
}

1
GORDON JOHNSON 29

Real Time Programming K1451760

An addition loop, was created and only used when the user option is set to display results, either
ASCI or Graphical. All non-master processes, send their grid section to the master process, so
the information can be drawn complete.

int processorCounter = info.numProcs - 1;
while (processorCounter != 9) {
for (int x = @; x < width; x++) {
for (int y = contributionY * processorCounter; y < height; y++) {
if (info.rank == processorCounter) {
MPI_Rsend(&mainGrid[x][y], 2, MPI_INT,

processorCounter - 1, y * (x + processorCounter),
MPI_COMM_WORLD);

}
if (info.rank == processorCounter - 1) {
MPI_Recv(&mainGrid[x][y], 2, MPI_INT,
processorCounter, y * (x + processorCounter),
MPI_COMM_WORLD, &status);
}

}
}

processorCounter--;

However, this loop contains a race condition. Although performance in this loop, has been
improved considerably since, the condition persists. This does not affect the performance test
results, as the tests are run with no draw attribute needed, so this loop is excluded.

GORDON JOHNSON 30

Real Time Programming K1451760

Results
Screen shots provided below, are taken at certain iteration counts, to demonstrate the evolving

simulation. Note: when using MPI, the system clear screen function no longer works, hence
the statistic being displayed unusually.

50 Iterations

100 Iterations

250 Iterations

GORDON JOHNSON 31

Real Time Programming K1451760

500 Iterations

1000 [terations

2500 iterations

1
GORDON JOHNSON 32

Real Time Programming K1451760

5000 Iterations

10000 [terations

1
GORDON JOHNSON 33

Real Time Programming K1451760

Performance

For the MPI implementation, the following tests were conducted, as presented in the
introduction of this report. Below this, is included the previous Serial Implementation results,
as a baseline comparison.

MPI Implementation

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
2X Processes 0.0004560 0.0516448 4,746244
4x Processes 0.0003442 0.0336481 2.949087
6X Processes 0.0004043 0.0302868 2.706252
8x Processes 0.0006964 0.0322505 2.743532

Serial Implementation Results (Baseline)

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
Average Speed per 0.0005381 0.0951833 8.722674
Iteration

Note: Using 8x processes on the 100x100 grid, is considerably slower than its predecessor and
falls below the baseline value. This could have been an issue at testing time and it does not
drop below the baseline for any other tests.

1
GORDON JOHNSON 34

Real Time Programming K1451760

AVERAGE SPEED AVERAGE SPEED

Wx2Processes Mxd Processes MG Processes M x8 Processes

3
8
g

Wx2Processes M x4 Processes M x6 Processes W x8 Processes

100X100 1000X1000

100x100 Grid Size (Average Speed) 1000x1000 Grid Size (Average Speed)

AVERAGE SPEED

W x2 Processes M x4 Processes Mx6 Processes M x8 Processes

10000X10000

10000x10000 Grid Size (Average Speed)

1
GORDON JOHNSON

35

Real Time Programming K1451760

Like the OpenMP implementation, this MPI version, provides almost double the speed to the
application, compared to the serial version by using 2x processes. Providing the simulation
with x4 processes, provides the largest increase in acceleration, compared to all other options.
Providing x6 and x8, both displayed minor improvements respectively, but still show better
performance than previously. The following graphs, show performance over time.

1000 x 1000

0.09
0.08

0.07
0.06
0.05 ek P

0.04
0.03
0.02
0.01

0

L]
m o~

106
141
176
211
246
281
316
351
386
421
456
491
526
561
586
631
666
701
736
771
806
841
876
911
946
981

%2 Processes x4 Processes %6 Processes x8 Processes

1000x1000 Grid Size (Performance per lteration)

10000 x 10000

6
5%.1 A l I L 1
4

35

69
103
137
171
205
239
273
307
341
375
409
443
477
511
545
579
613
647
681
715
749
783
817
851
885
919
953
987

x2 Processes x4 Processes x6 Processes x8 Processes

10000x10000 Grid Size (Performance per lteration)

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds
taken, indicative of a decline in performance over time

The 100x100 grid with x8 threads, also shows a decrease in performance. This could have been
an issue with processor usage at the time of testing and does not reflect in other tests, with this
amount of threads.

1
GORDON JOHNSON 36

Real Time Programming K1451760
Hybrid Implementation

Algorithm / Strategy / Implementation
From the MPI implementation, there is no need to change any code for the Hybrid version,
including OpenMP which was implemented into the previous targeted locations.

Results

Screen shots provided below are taken at certain iteration counts, to demonstrate the evolving
simulation. Note: when using MPI / Hybrid, the system clear screen function no longer works,
hence the statistic being displayed unusually.

50 Iterations

100 Iterations

1
GORDON JOHNSON 37

Real Time Programming K1451760

250 Iterations

500 Iterations

1000 [terations

1
GORDON JOHNSON 38

Real Time Programming K1451760

2500 iterations

5000 Iterations

10000 Iterations

1
GORDON JOHNSON 39

Real Time Programming K1451760

Performance

For the Hybrid implementation, the following tests were conducted, as presented in the
introduction of this report. The previous Serial Implementation results, are included below, as
a baseline comparison

Hybrid Implementation
Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
2X Processes 2x Threads 0.0004098 0.0332343 2.849304
4x Processes 4x Threads 0.0004324 0.0253125 2.234793
6Xx Processes 2x Threads 0.0005120 0.0311172 2.532860
2Xx Processes 6x Threads 0.0003651 0.0265826 1.977537

Serial Implementation Results (Baseline)

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
Average Speed per 0.0005381 0.0951833 8.722674
Iteration

Note: Using 8x processes on the 100x100 grid, is considerably slower than its predecessor and
falls below the baseline value. This could have been an issue with processor usage at the time
of testing, it does not drop below the baseline for any other tests.

1
GORDON JOHNSON 40

Real Time Programming K1451760

AVERAGE SPEED

AVERAGE SPEED mx2Processx2 Threads M x4 Process xd Threads W6 Process x2 Threads x2 Process x6 Threads

Wx2Processx2 Threads M x4 Process x4 Threads W x6 Process x2 Threads ® x2 Process x6 Threads

100X100

100x100 Grid Size (Average Speed) 1000x1000 Grid Size (Average Speed)

AVERAGE SPEED

W x2 Process x2 Threads M x4 Process x4 Threads ® x6 Process x2 Threads ® x2 Process x6 Threads

10000xX10000

10000x10000 Grid Size (Average Speed)

1
GORDON JOHNSON 41

Real Time Programming K1451760

Like the OpenMP implementation, this MPI version provides almost double the speed to the
application, compared to the serial version by using 2x processes. Providing the simulation
with x4 processes, provides the largest increase in acceleration compared to all other options.
Providing x6 and x8, displayed minor improvements respectively, but still show better
performance than the previous. The following graphs, show performance over time.

1000 x 1000

0.1
0.14
0.12

0.1
0.08
0.06
0.04
0.02

324

647

970
1293
1616
1939
2262
2585
2908
3231
3554
3877
4200
4523
4846
5169
5492
5815
6138
6461
6784
7107
7430
7753
8076
8399
8722
9045
9368
9691

x2 Threads x4 Threads x6 Threads x8 Threads

1000x1000 Grid Size (Performance per Iteration)

10000 x 10000

} |M»¢.~ 'mwld-‘wm.wmu.ldp,qu.mnwlwhnm

36

71
106
141
176
211
246
281
316
351
386
421
456
491
526
561
596
631
666
701
736
771
806
841
876
911
946
981

x2 Threads x4 Threads x6 Threads x8 Threads

10000x10000 Grid Size (Performance per Iteration)

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds
taken, indicative of a decline in performance over time.

Also noted that the 100x100 grid with x8 threads, shows a decrease in performance. This could
have been an issue with processor usage at the time of testing and does not reflect in the other
tests with this amount of threads.

1
GORDON JOHNSON 42

Real Time Programming K1451760

Evaluation

In conclusion, using Multi-Threaded or Multi-Processed technologies, adds considerable value
to the overall performance of an application. The table highlights the best performing
configurations, for each category of implementation, within each grid size.

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000
Serial 0.0005381 0.0951833 8.722674
OpenMP 0.0001213 0.0187689 1.723995
X6 Threads x8 Threads x8 Threads
MPI 0.0003442 0.0302868 2.706252
x4 Processes X6 Processes X6 Processes
Hybrid 0.0003651 0.0253125 1.977537
X2 Processes X4 Processes X2 Processes
X6 Threads x4 Threads X6 Threads

As can be seen from the table above, OpenMP, performed the best across every scenario. The
graphics below, make these results more visual. The 100 x 100 grid results where more varied,
this highlights that these methods are more suited to a higher demanding application.

100x100

0.0006
0.0005
0.0004
0.0003

0.0002

b -
o

100 x 100

mSerial WOpenMP WMPI m Hybrid

1
GORDON JOHNSON 43

Real Time Programming K1451760

The 1,000 x 1,000 and 10,000 x 10,000 grid sizes, show a more consistent result. In both cases,
OpenMP performed 5.07 and 5.06 times faster, than the baseline serial implementation. MPI,
while performing slower than the OpenMP method, still provided extremely fast performance
at 3.14 and 3.22 time faster than the baseline. The Hybrid implementation, improved the
performance of the vanilla MPI version, by making the 1,000 x 1,000 test 3.76 times faster than
baseline, however the 10,000 x 10,000 test, saw the largest performance boost of 4.41 times
faster.

1000x1000

- -
0
1,000 x 1,000

WSerial WOpenMP WMPI m Hybrid

10000x10000

10,000 x 10,000

mSerial ® OpenMP MP Hyhrid

OpenMP, was considerably easier to implement into a serial model, by targeting specific loops
where the application was demanding. Making this a cost-effective implementation, for overall
performance increase.

The MPI implementation, required much more consideration and amendments to the serial
version. To achieve message passing, additional loops where implemented, to ensure
appropriate information was gathered, prior to evaluation of the states. These additional
requirements provide a larger overhead, which could impede the performance of the MPI and
Hybrid version. However, on larger scale infrastructure / applications, 1 would assume MPI
would be more in its element, especially with multiple infrastructures across networked
processing units. Mixing this with a Hybrid implementation, has also proved advantages when
performance is key.

1
GORDON JOHNSON 44

Real Time Programming K1451760

References

Manekar. A, Poundekar. M, Gupta. H, Nagle. M (2012) ‘A Pragmatic Study and Analysis of
Load Balancing Techniques in Parallel Computing’, International Journal of Engineering
Research and Applications, 2(4), pp.1914-1918.

MSDN (2018) Microsoft MPI. Available at: https://msdn.microsoft.com/en-
us/library/bb524831(v=vs.85).aspx (Accessed: 01 April 2018)

OpenMP (2018) The OpenMP API specification for parallel programming. Available at:
http://www.openmp.org/ (Accessed: 29 March 2018)

GORDON JOHNSON 45

https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
http://www.openmp.org/

