

Real Time
Programming
Parallel Programming

Gordon Johnson
K1451760

K1451760

GORDON JOHNSON 1

1 Real Time Programming

Table of Contents
Introduction .. 2

Serial Implementation .. 3

Algorithm / Strategy ... 3

Implementation... 5

Class Diagram .. 10

Results .. 11

Performance ... 14

Study of the potential for parallelisation .. 15

Sequential Section .. 15

Potential Parallel Sections .. 15

Critical sections and points of synchronisation .. 16

Potential issues of load balancing .. 16

Global Operations .. 16

OpenMP Implementation ... 17

Algorithm / Strategy / Implementation .. 17

Results .. 20

Performance ... 23

MPI Implementation .. 26

Algorithm / Strategy / Implementation .. 26

Results .. 31

Performance ... 34

Hybrid Implementation .. 37

Algorithm / Strategy / Implementation .. 37

Results .. 37

Performance ... 40

Evaluation .. 43

References .. 45

K1451760

GORDON JOHNSON 2

2 Real Time Programming

Introduction

I am going to create a prey/predator simulation, using cellular automata, to demonstrate the

performance and behaviours of different parallel programming techniques. My goal is to

deliver four implementations, in one application. To achieve this, an options menu will need to

be implemented, this application will be coded in C++. A serial implementation, will be

implemented to provide a base line. An OpenMP implementation, will be used to demonstrate

the multi-threaded and an MPI implementation, will be used for multi-processor

demonstrations. Finally, a hybrid implementation, will make use of both OpenMP and MPI.

This will be done using ASCI text, this provides the application the opportunity to have

customisation once launched. SDL, will be used to provide a graphical output for the

simulation. This will provide an overhead on performance, so an option will be available to

exclude this when testing.

Performance testing, will be conducted on each implementation, using grid sizes 100x100,

1,000x1,000 and 10,000x10,000. The first two grid sizes, will be tested over 10,000 iterations,

with the final grid size being tested over 1,000 iterations. The OpenMP, will be tested using 2,

4, 6 and 8 threads. MPI, will be tested using 2, 4, 6 and 8 processes. The Hybrid, will be tested

using (threads, processes), these will be performed using the following strategy (2, 2), (4, 4),

(6, 2) and (2, 6).

The following, presents the specification of the device used, for all the performance tests:

CPU: Intel® Core™ i7-7700HQ Quad-Core Processor with Hyper-Threading 2.8GHz /

3.8GHz (Base/Turbo)

SSD: 512GB SSD (PCIe M.2)

Memory: 16GB dual-channel onboard memory (DDR4, 2400MHz)

GPU: NVIDIA® GeForce® GTX 1060 (6GB GDDR5 VRAM)

OS: Windows 10 (64-Bit)

GitHub: https://github.com/LordGee/prey_pred

Box: https://kingston.box.com/s/cp9oauh5qcui3y4j6e5g87lvxxfl3v3j

YouTube: https://youtu.be/9KmIm2TVGWg

https://github.com/LordGee/prey_pred
https://kingston.box.com/s/cp9oauh5qcui3y4j6e5g87lvxxfl3v3j
https://youtu.be/9KmIm2TVGWg

K1451760

GORDON JOHNSON 3

3 Real Time Programming

Serial Implementation

Algorithm / Strategy

The first priority, is to find the best process, to manage each cell within the grid, identifying

the important attributes and how they are going to be represented. To do this a class is created

called Cell, with two attributes that are both initialised to zero. These attributes are Type and

Age. The attribute Type, indicates whether the cell is Prey, Predator or Empty. The mechanics

for Type, are as follows:

• -1 = Predator

• 0 = Empty

• 1 = Prey

The Age attribute, will be used to store the incremental age of the cell. Unless the cell is empty,

then it will remain at zero value.

The main loop, for the simulation, will have to iterate through every cell within the grid, whilst

analysing all eight neighbouring cells. To accomplish this, the use of four ‘if’ statements will

be used, to check if either the x or y coordinates, are out of bounds. If so, they will change the

value to be checked to the opposite side of the grid, for example, if the y index returns a -1

value, then the overall height value will be added to this, to provide the highest possible index

that y could be. As each neighbouring cell is checked, if the type of cell is not empty, then the

type is accumulated within a variable, for later use. Also, when identifying if the cell is prey or

predator, a check is performed to determine whether they are of breeding age, this is

accumulated in an age variable.

Once all the neighbouring checks have been completed, it is then time to check what the new

state of the cell will be. To accomplish this, the check statements will be broken down into

three categories, depending on their current type, e.g. manage prey, manage predator and

manage empty. These three checks, will contain additional ‘if’ statements, to determine if any

of the set rule conditions have been met.

For a given cell containing a fish,

• Fish live for 10 generations

• If >= 5 neighbours are sharks, fish dies (shark food)

• If all 8 neighbours are fish, fish dies (overpopulation)

• If a fish does not die, increment age

K1451760

GORDON JOHNSON 4

4 Real Time Programming

For a given cell containing a shark,

• Sharks live for 20 generations

• If >= 6 neighbours are sharks, and fish neighbours = 0, then the shark dies (starvation)

• A shark has a 1/32 (.031) chance of dying due to random causes

• If a shark does not die, increment age

For a given empty cell,

• If there are >= 4 neighbours of one species, with >= 3 of them of breeding age and there

are <= 4 of the other species, then create a species of that type.

The new state of the cell, will be recorded into a temporary grid. This, will be an independent

array, of equal size to the actual grid. This is due to the main loop having not concluded through

all cells yet, but the remaining checks still need to be based upon the original states. After all

cells have been iterated through, the temporary grid containing the new states, will be copied

back to the main grid, so the process can start again for the next iteration.

K1451760

GORDON JOHNSON 5

5 Real Time Programming

Implementation

As discussed in the strategy, the need for an implementation of an object to manage each

individual cell was created. In hindsight, this could have been simplified in a struct as opposed

to a class, eliminating the need to declare the attributes and operations as public.

class Cell {
public:
 int type;
 int age;

public:
 Cell() {
 type = 0;
 age = 0;
 };
};

When a new instance of the simulator is created, the constructor initialises the required

variables and sets up appropriate size vector arrays, for both the main and temporary grid. This

constructor, will persist for every implementation, as the parent constructor.

Simulator::Simulator(int width, int height, int preyPercent, int predPercent, int ran-
domSeed, int threads, int proc) :
width(width), height(height), seed(randomSeed), numThreads(threads), numProc(proc) {
 prey = (float)preyPercent / 100.0f;
 pred = (float)predPercent / 100.0f;
 mainGrid = std::vector<std::vector<Cell>>(width);
 copyGrid = std::vector<std::vector<Cell>>(width);
 for (int x = 0; x < width; x++) {
 mainGrid[x] = std::vector<Cell>(height);
 copyGrid[x] = std::vector<Cell>(height);
 }
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 mainGrid[x][y].type = 0;
 mainGrid[x][y].age = 0;
 }
 }
}

K1451760

GORDON JOHNSON 6

6 Real Time Programming

After the constructor, the next operation populates the main grid with starting values. The

values entered are set randomly, using a predefined seed for the random generator and

predefined percentages of prey and predator.

void Serial::PopulateGrid() {
 srand(seed);
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 float random = (float)(rand()) / (float)(RAND_MAX);
 if (random < prey) {
 mainGrid[x][y].type = 1;
 mainGrid[x][y].age = 1;
 } else if (random < prey + pred) {
 mainGrid[x][y].type = -1;
 mainGrid[x][y].age = 1;
 } else {
 mainGrid[x][y].type = 0;
 mainGrid[x][y].age = 0;
 }
 }
 }
}

Once the main array has been generated, there are three entry points to the main loop,

depending type of display the user option chooses. The three options are, graphical output, or

no display. The code below, is for ASCI statistics, it loops through the simulator and outputs

the statistics, to the console window.

void Serial::RunSimNoDraw(const int COUNT) {
 int counter = 0;
 clock_t t1, t2;
 float timer;
 while (counter < COUNT) {
 t1 = clock();
 deadPrey = 0, deadPred = 0;
 livePrey = 0, livePred = 0, empty = 0;
 UpdateSimulation();
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 if (mainGrid[x][y].type > 0) {
 livePrey++;
 } else if (mainGrid[x][y].type < 0) {
 livePred++;
 } else {
 empty++;
 }
 }
 }
 t2 = clock();
 timer = (float)(t2 - t1) / CLOCKS_PER_SEC;
 UpdateStatistics(timer, counter, livePrey, livePred, empty,
 deadPrey, deadPred);
 counter++;
 }
}

K1451760

GORDON JOHNSON 7

7 Real Time Programming

Within the main loop, the following operation is called. This checks the state of each cell and

updates the simulator. The first step, is to check all neighbouring objects of the given cell. The

cell, depending on its current state, is then checked to determine its new state.

void Serial::UpdateSimulation() {
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 // loop each neighbouring cell
 // check neighbouring cell states
 // Manage Prey
 // Check new state of cell
 // Manage Predator
 // Check new state of cell
 // Manage Empty
 // Check new state of cell
 }
 }
}

The following, initialises new variables to perform a count on the neighbouring cells,

depending on their state. This is done, by using a double loop, which provides a value either -

1, 0 or 1. If both loop values are set to 0, then this is the current cell and is ignored. New x and

y values, are created by adding 𝑥 + 𝑖, and 𝑦 + 𝑗. The new value is then checked, to ensure that

it is not out of bounds of the grid. If it is, then the value is recalculated to the other side of the

grid. For example, if 𝑦 + 𝑗 = −1, then 𝑦 = 𝑦 + 𝑗 + ℎ𝑒𝑖𝑔ℎ𝑡. So, if height were to equal

100, then this will result in the new y being the last index in the grid (0 + −1) + 100 = 99.
If the new grid index is a prey or predator, then the relevant variable is accumulated, whilst

also checking if that type is greater or equal to the breeding age. This is also accumulated to its

respective variable.

int preyCount = 0, preyAge = 0, predCount = 0, predAge = 0;
for (int i = -1; i < 2; i++) {
 for (int j = -1; j < 2; j++) {
 if (!(i == 0 && j == 0)) {
 int newX = x + i, newY = y + j;
 if (newY < 0) { newY = newY + height; }
 if (newX < 0) { newX = newX + width; }
 if (newY >= height) { newY = newY - height; }
 if (newX >= width) { newX = newX - width; }
 if (mainGrid[newX][newY].type > 0) {
 preyCount++;
 if (mainGrid[newX][newY].age >= PREY_BREEDING) {
 preyAge++;
 }
 } else if (mainGrid[newX][newY].type < 0) {
 predCount++;
 if (mainGrid[newX][newY].age >= PRED_BREEDING) {
 predAge++;
 }
 }
 }
 }
}

K1451760

GORDON JOHNSON 8

8 Real Time Programming

The following three operations, manage the new state of each cell. Depending on the cells

current type, the new values are created and placed in a temporary grid. This ensures, the

remainder of the simulation update, is based on the current values, not the new values.

if (mainGrid[x][y].type > 0) {
 //manage prey
 if (predCount >= 5 || preyCount == 8 || mainGrid[x][y].age > PREY_LIVE) {
 copyGrid[x][y].type = 0;
 copyGrid[x][y].age = 0;
 deadPrey++;
 } else {
 copyGrid[x][y].type = mainGrid[x][y].type;
 copyGrid[x][y].age = mainGrid[x][y].age + 1;
 }
}

This manages the predator cells, by performing a check based on the rules for if the predator

dies. If any of these conditions are true, then the cell is set to a zero value, this indicates the

new cell type is empty. As before, the predator remains as the type and the age is incremented.

else if (mainGrid[x][y].type < 0) {
 // manage predator
 float random = (float)(rand()) / (float)(RAND_MAX);
 if ((predCount >= 6 && preyCount == 0) || random <= PRED_SUDDEN_DEATH ||
 copyGrid[x][y].age > PRED_LIVE) {
 copyGrid[x][y].type = 0;
 copyGrid[x][y].age = 0;
 deadPred++;
 } else {
 copyGrid[x][y].type = mainGrid[x][y].type;
 copyGrid[x][y].age = mainGrid[x][y].age + 1;
 }
}

K1451760

GORDON JOHNSON 9

9 Real Time Programming

The final checks, are to manage the current empty cells, dependant on the surrounding cell

types and age count, potentially a new type, either prey or predator, could be generated. If

neither condition is met, then the cell remains empty.

else {
 // manage empty space
 if (preyCount >= NO_BREEDING && preyAge >= NO_AGE &&
 predCount < NO_WITNESSES) {
 copyGrid[x][y].type = 1;
 copyGrid[x][y].age = 1;
 } else if (predCount >= NO_BREEDING && predAge >= NO_AGE &&
 preyCount < NO_WITNESSES) {
 copyGrid[x][y].type = -1;
 copyGrid[x][y].age = 1;
 } else {
 copyGrid[x][y].type = 0;
 copyGrid[x][y].age = 0;
 }
}

Finally, once the main update loop has concluded, the temporary array is then copied, cell by

cell, into the main array, ready for the next iteration.

for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 mainGrid[x][y] = copyGrid[x][y];
 }
}

K1451760

GORDON JOHNSON 10

10 Real Time Programming

Class Diagram

K1451760

GORDON JOHNSON 11

11 Real Time Programming

Results
After some trial and error, the simulator worked as desired. The screen shots, provided below,

were taken at certain iteration counts, to demonstrate the evolving simulation.

50 Iterations

100 Iterations

250 Iterations

K1451760

GORDON JOHNSON 12

12 Real Time Programming

500 Iterations

1000 Iterations

2500 iterations

K1451760

GORDON JOHNSON 13

13 Real Time Programming

5000 Iterations

10000 Iterations

K1451760

GORDON JOHNSON 14

14 Real Time Programming

Performance
For this serial implementation, the following tests were conducted.

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

Average Speed per

Iteration

0.0005381 0.0951833 8.722674

As can be seen by the average iteration speed, the smaller grid sizes present a reasonable

average time. However, for the largest grid size, each iteration is taking over 8 seconds to

complete.

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds

taken, indicative of a decline in performance over time.

K1451760

GORDON JOHNSON 15

15 Real Time Programming

Study of the potential for parallelisation

Sequential Section
From executing the application, the Main method, App and Setup classes, will remain

sequential. Adding parallelisation to these areas, will provide no performance improvements

to the application, as they are mainly user dependent. Any display methods or file writing

should also remain sequential, this will ensure no duplicate outputs are displayed and like the

previous methods, will provide no benefit to the simulation process of the application.

Potential Parallel Sections
The main three sections, that should be targeted for parallelisation, are all within the main

Update Simulation loop.

void Serial::UpdateSimulation() {
 /* Target for Parallelisation */

for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {

// Prepare temporary grid
 }
 }
 /* Target for Parallelisation */
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 // loop each neighbouring cell
 // check neighbouring cell states
 // Manage Prey
 // Check new state of cell
 // Manage Predator
 // Check new state of cell
 // Manage Empty
 // Check new state of cell
 }
 }
 /* Target for Parallelisation */

for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {

// Copy temporary grid back to main
 }
 }

}

Additional consideration during the MPI implementation, is going to be required when

performing the check of the neighbouring cells. Each process, will need to be prepared, prior

to going into the evaluation loop. This ensures sufficient values are held, to enable all the

neighbouring states to be checked.

K1451760

GORDON JOHNSON 16

16 Real Time Programming

Critical sections and points of synchronisation
In all instances of parallelisation, using a barrier will ensure synchronisation, for example, prior

to the evaluation loop. It will be important to ensure all processes contain the relevant

information, especially in the MPI implementation, ready for checking the neighbouring states,

particularly if a neighbouring state is managed by a different process.

In addition, the OpenMP implementation will require a barrier, before the temporary grid is

copied back to the main grid. This is to ensure that all threads, have evaluated all states, before

continuing.

Potential issues of load balancing
There are two different methods that can be used to manage load balancing, these are Static

and Dynamic. As highlighted (Manekar et al., 2012), the dynamic approach adds a greater level

of complexity, making the process more unpredictable and adding a greater overhead to the

application. Although this approach, could potentially improve overall performance due to the

workload being allocated at run time, I have opted for the static approach initially, so the

workload is allocated within the code and is known at compile time. This will also allow easier

debugging of the application and ensure stability during the simulation process. If time allows,

I will attempt a dynamic approach, to potentially improve performance and reusability further.

Global Operations
The only section targeted for parallelisation, where global variables will become an issue, is a

loop that is only relevant in one selection of user defined options, when the display mode is set

to “ASCI Statistics Only. The variables, will be used to accumulate the current statistics, so

they can be displayed accurately.

livePrey = 0, livePred = 0, empty = 0;
 UpdateSimulation();
#pragma omp parallel num_threads(numThreads) shared (livePrey, livePred, empty)
 {
#pragma omp for reduction (+: livePrey, livePred, empty)
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 if (mainGrid[x][y].type > 0) {
 livePrey++;
 } else if (mainGrid[x][y].type < 0) {
 livePred++;
 } else {
 empty++;
 }
 }
 }
 }

Fortunately, some of the variables, e.g. the Main Grid array, that are global, won’t be affected

from the parallel process. This is because access to them is determined by the local variables

within the loop, that determine the index of the array element. This ensures, that only one thread

is accessing that shared element of the array, at any one iteration.

K1451760

GORDON JOHNSON 17

17 Real Time Programming

OpenMP Implementation

Algorithm / Strategy / Implementation
For the OpenMP implementation, there was no need to change the algorithm itself compared

to the Serial implementation. Upon evaluation of the main class, there were five main sections

of code that I felt would benefit from the OpenMP implementation.

The first was the Populate Grid method. Although this does not affect the simulation, as it is

only ever called once per execution, I felt that this would speed up the initial start-up of the

simulation, as this needs to be actioned before it can begin.

The next three targeted sections, are all within the main Update Simulation loop, indication of

areas to be targeted for OpenMP can be seen in the comments below.

void Serial::UpdateSimulation() {
 /* Target for OpenMP */

for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {

// Prepare temporary grid
 }
 }
 /* Target for OpenMP */
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 // loop each neighbouring cell
 // check neighbouring cell states
 // Manage Prey
 // Check new state of cell
 // Manage Predator
 // Check new state of cell
 // Manage Empty
 // Check new state of cell
 }
 }
 /* Target for OpenMP */

for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {

// Copy temporary grid back to main
 }
 }

}

K1451760

GORDON JOHNSON 18

18 Real Time Programming

The first section is to prepare the temporary grid, ready to store new information.

#pragma omp parallel num_threads(numThreads)
 {
#pragma omp for
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 copyGrid[x][y].type = 0;
 copyGrid[x][y].age = 0;
 }
 }
 }

Evaluating the next loop for global and local variables, revealed only one issue, which was

within the set random value operation. Initially this was inside the loop, but this presented

undesirable results. Next, I tried to take this outside the declaration for OpenMP as a global

declaration, this did not work, as this type of method cannot be shared. Finally, I added this,

just after the OpenMP declaration, but just before the OpenMP for loop.

#pragma omp parallel num_threads(numThreads)
 {
 srand(time(NULL));
#pragma omp for
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 // Evaluate neighbours

 }
 }
 }

Other variables that are used within this section of code, are local and declared within the loop.

Regardless, they needed to be reset throughout each iteration, so this presented no need for

concern.

The final loop within this section of code, is to copy the temporary grid details back into the

main grid. However, for peace of mind, an OpenMP Barrier, was included before this loop

starts, ensuring all threads have completed the previous evaluation loop before starting.

#pragma omp barrier
#pragma omp parallel num_threads(numThreads)
 {
#pragma omp for
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 mainGrid[x][y] = copyGrid[x][y];
 }
 }
 }
}

K1451760

GORDON JOHNSON 19

19 Real Time Programming

The final targeted loop, is only relevant in one situation of a user defined option, that is when

the display mode is set to “ASCI Statistics Only. This section, demonstrates how global

variables can be used and shared between threads, to provide an accumulated result.

livePrey = 0, livePred = 0, empty = 0;
 UpdateSimulation();
#pragma omp parallel num_threads(numThreads) shared (livePrey, livePred, empty)
 {
#pragma omp for reduction (+: livePrey, livePred, empty)
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 if (mainGrid[x][y].type > 0) {
 livePrey++;
 } else if (mainGrid[x][y].type < 0) {
 livePred++;
 } else {
 empty++;
 }
 }
 }
 }

K1451760

GORDON JOHNSON 20

20 Real Time Programming

Results
Screen shots, provided below, are taken at certain iteration counts, to demonstrate the evolving

simulation.

50 Iterations

100 Iterations

250 Iterations

K1451760

GORDON JOHNSON 21

21 Real Time Programming

500 Iterations

1000 Iterations

2500 iterations

K1451760

GORDON JOHNSON 22

22 Real Time Programming

5000 Iterations

10000 Iterations

K1451760

GORDON JOHNSON 23

23 Real Time Programming

Performance

For the OpenMP implementation, the following tests were conducted, as presented in the

introduction of this report. As a baseline comparison, the previous Serial Implementation

results, are below.

OpenMP Implementation

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

2x Threads 0.0002973 0.0493534 4.547463

4x Threads 0.0001508 0.0295983 2.490935

6x Threads 0.0001213 0.0229262 2.008494

8x Threads 0.0002027 0.0187689 1.723995

Serial Implementation Results (Baseline)

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

Average Speed per

Iteration

0.0005381 0.0951833 8.722674

As can be seen by these results, using just 2x Threads within the OpenMP implementation,

provides almost double the speed to the application. Providing the simulation with x4 threads,

provides the largest increase in acceleration, compared to all other options. Providing x6 and

x8, both provided minor improvements respectively, but still show better performance than the

previous.

K1451760

GORDON JOHNSON 24

24 Real Time Programming

10000x10000 Grid Size (Average Speed)

100x100 Grid Size (Average Speed) 1000x1000 Grid Size (Average Speed)

K1451760

GORDON JOHNSON 25

25 Real Time Programming

The following graphs, show performance over time.

1000x1000 Grid Size (Performance per Iteration)

10000x10000 Grid Size (Performance per Iteration)

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds

taken, indicative of a decline in performance over time

Also noted, that the 100x100 grid with x8 threads, shows a decrease in performance. This could

have been an issue with processor usage at the time of testing and does not reflect in the other

tests with this amount of threads.

K1451760

GORDON JOHNSON 26

26 Real Time Programming

MPI Implementation

Algorithm / Strategy / Implementation
Due to the original design of implementing the project into a single application, as opposed to

four, MPI needed to be implemented regardless, at the application point of entry. The main

function of this, will need to be executed, regardless of whether MPI is being used.

int main(int argc, char *argv[]) {
 MPI_Init(&argc, &argv);
 InfoMPI* info = new InfoMPI;
 MPI_Comm_size(MPI_COMM_WORLD, &info->numProcs);
 MPI_Comm_rank(MPI_COMM_WORLD, &info->rank);
 App* app = new App(*info);
 delete app;
 delete info;
 MPI_Finalize();
 system("PAUSE");
 return 0;
}

Extra consideration needed to be taken throughout the setup process, to ensure the master

process took care of the user selection process. Whilst at the same time, ensuring the selection

is passed to all other processes.

In the main simulation, it was important to decide early, how to best

split the data being processed across two or more processes. The main

grid, needed to be split either in the x or y direction. For this, I chose to

split across the y (height) value, as seen in the diagram to the right.

Process 0, will take on the role of the master process and will process

everything outside of the main simulation, which includes managing

the statistic and graphics to be displayed. An extra check, is needed

before the simulation can start, this is to determine if the height value will evenly split between

the selected number of processes. If this is not the case, then the value will be rounded down,

to the next even split value.

K1451760

GORDON JOHNSON 27

27 Real Time Programming

The first method, to manage the split of the grid, is to populate the grid with its initial states.

For this, the master process takes care of the initial declaration of states, depending on which

process region y is currently at, it will send that information to the appropriate processors grid.

void MsMPI::PopulateGrid() {
 const int contributionY = abs(height / info.numProcs);
 int processorCounter = 1;
 for (int x = 0; x < width; x++) {
 for (int y = 0; y < height; y++) {
 // Only the master manages the initial declaration
 // of each cell state
 if (info.rank == 0) {
 // allocate random cell state
 }
 // determine if the y value has exceeded the current
 // processor split
 if (y >= contributionY * (processorCounter + 1)) {
 if (processorCounter != info.numProcs - 1) {
 processorCounter++;
 }
 }
 // If within the current processor copy the master cell
 // to the appropriate processor
 if (y >= contributionY * processorCounter &&
 y < contributionY * (processorCounter + 1)) {
 if (info.rank == 0) {
 MPI_Send(&mainGrid[x][y], 2, MPI_INT,
 processorCounter, y, MPI_COMM_WORLD);
 }
 if (info.rank == processorCounter) {
 MPI_Recv(&mainGrid[x][y], 2, MPI_INT,
 0, y, MPI_COMM_WORLD, &status);
 }
 }
 }
 // at the end of each y iteration reset processor to 1
 processorCounter = 1;
 }

Once complete, the master process will store all the initial states, but going forward will only

mange its own starting section. For example, if the height of the grid was 100 and there are 4

active processes, then the management of the y value would be as follows

• Process 0 – (0 - 24)

• Process 1 – (25 - 49)

• Process 2 – (50 - 74)

• Process 3 – (75 - 99)

K1451760

GORDON JOHNSON 28

28 Real Time Programming

The next step, was to ensure that each process contains the latest

neighbouring states. As each process is only managing a split of section,

an addition loop is implemented, to copy the missing information to the

relevant process (see image on right).

Including this, additional two rows of information in each process, will

eliminate the need to apply any amendments, when it comes to checking

the neighbouring states.

for (int x = 0; x < width; x++) {
 if (info.rank == 0) {
 MPI_Send(&mainGrid[x][0], 2, MPI_INT,
 info.numProcs - 1, x, MPI_COMM_WORLD);
 MPI_Recv(&mainGrid[x][height - 1], 2, MPI_INT,
 info.numProcs - 1, x + width, MPI_COMM_WORLD, &status);
 }
 else if (info.rank == info.numProcs - 1) {
 MPI_Send(&mainGrid[x][height - 1], 2, MPI_INT,
 0, x + width, MPI_COMM_WORLD);
 MPI_Recv(&mainGrid[x][0], 2, MPI_INT,
 0, x, MPI_COMM_WORLD, &status);
 }
 if (info.rank != info.numProcs - 1) {
 MPI_Send(&mainGrid[x][(contributionY * (info.rank + 1)) - 1], 2,
 MPI_INT, info.rank + 1, x, MPI_COMM_WORLD);
 MPI_Recv(&mainGrid[x][(contributionY * (info.rank + 1))], 2,
 MPI_INT, info.rank + 1, x, MPI_COMM_WORLD, &status);
 }
 if (info.rank != 0) {
 MPI_Send(&mainGrid[x][contributionY * info.rank], 2,
 MPI_INT, info.rank - 1, x, MPI_COMM_WORLD);
 MPI_Recv(&mainGrid[x][(contributionY * info.rank) - 1], 2,
 MPI_INT, info.rank - 1, x, MPI_COMM_WORLD, &status);
 }
}

K1451760

GORDON JOHNSON 29

29 Real Time Programming

Before going into the main update loop, a barrier is applied to ensure all processes have sent

their updated values, to the relevant other process. The main update loop itself, remains the

same as the other implementations, with the exception that the for loop, only considers the y

range related to the process that is going through.

MPI_Barrier(MPI_COMM_WORLD);
for (int x = 0; x < width; x++) {
 for (int y = contributionY * info.rank;

y < contributionY * (info.rank + 1); y++) {
 // loop each neighbouring cell
 // check neighbouring cell states
 // Manage Prey
 // Check new state of cell
 // Manage Predator
 // Check new state of cell
 // Manage Empty
 // Check new state of cell
 }
}

The new states, are then copied to the main grid, taking into consideration each process has a

unique y range.

for (int x = 0; x < width; x++) {
 for (int y = contributionY * info.rank;
 y < contributionY * (info.rank + 1); y++) {
 mainGrid[x][y] = copyGrid[x][y];
 }
}

K1451760

GORDON JOHNSON 30

30 Real Time Programming

An addition loop, was created and only used when the user option is set to display results, either

ASCI or Graphical. All non-master processes, send their grid section to the master process, so

the information can be drawn complete.

int processorCounter = info.numProcs - 1;
while (processorCounter != 0) {
 for (int x = 0; x < width; x++) {
 for (int y = contributionY * processorCounter; y < height; y++) {
 if (info.rank == processorCounter) {
 MPI_Rsend(&mainGrid[x][y], 2, MPI_INT,
 processorCounter - 1, y * (x + processorCounter),
 MPI_COMM_WORLD);
 }
 if (info.rank == processorCounter - 1) {
 MPI_Recv(&mainGrid[x][y], 2, MPI_INT,
 processorCounter, y * (x + processorCounter),
 MPI_COMM_WORLD, &status);
 }
 }
 }
 processorCounter--;
}

However, this loop contains a race condition. Although performance in this loop, has been

improved considerably since, the condition persists. This does not affect the performance test

results, as the tests are run with no draw attribute needed, so this loop is excluded.

K1451760

GORDON JOHNSON 31

31 Real Time Programming

Results
Screen shots provided below, are taken at certain iteration counts, to demonstrate the evolving

simulation. Note: when using MPI, the system clear screen function no longer works, hence

the statistic being displayed unusually.

50 Iterations

100 Iterations

250 Iterations

K1451760

GORDON JOHNSON 32

32 Real Time Programming

500 Iterations

1000 Iterations

2500 iterations

K1451760

GORDON JOHNSON 33

33 Real Time Programming

5000 Iterations

10000 Iterations

K1451760

GORDON JOHNSON 34

34 Real Time Programming

Performance

For the MPI implementation, the following tests were conducted, as presented in the

introduction of this report. Below this, is included the previous Serial Implementation results,

as a baseline comparison.

MPI Implementation

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

2x Processes 0.0004560 0.0516448 4.746244

4x Processes 0.0003442 0.0336481 2.949087

6x Processes 0.0004043 0.0302868 2.706252

8x Processes 0.0006964 0.0322505 2.743532

Serial Implementation Results (Baseline)

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

Average Speed per

Iteration

0.0005381 0.0951833 8.722674

Note: Using 8x processes on the 100x100 grid, is considerably slower than its predecessor and

falls below the baseline value. This could have been an issue at testing time and it does not

drop below the baseline for any other tests.

K1451760

GORDON JOHNSON 35

35 Real Time Programming

10000x10000 Grid Size (Average Speed)

100x100 Grid Size (Average Speed) 1000x1000 Grid Size (Average Speed)

K1451760

GORDON JOHNSON 36

36 Real Time Programming

Like the OpenMP implementation, this MPI version, provides almost double the speed to the

application, compared to the serial version by using 2x processes. Providing the simulation

with x4 processes, provides the largest increase in acceleration, compared to all other options.

Providing x6 and x8, both displayed minor improvements respectively, but still show better

performance than previously. The following graphs, show performance over time.

1000x1000 Grid Size (Performance per Iteration)

10000x10000 Grid Size (Performance per Iteration)

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds

taken, indicative of a decline in performance over time

The 100x100 grid with x8 threads, also shows a decrease in performance. This could have been

an issue with processor usage at the time of testing and does not reflect in other tests, with this

amount of threads.

K1451760

GORDON JOHNSON 37

37 Real Time Programming

Hybrid Implementation

Algorithm / Strategy / Implementation
From the MPI implementation, there is no need to change any code for the Hybrid version,

including OpenMP which was implemented into the previous targeted locations.

Results
Screen shots provided below are taken at certain iteration counts, to demonstrate the evolving

simulation. Note: when using MPI / Hybrid, the system clear screen function no longer works,

hence the statistic being displayed unusually.

50 Iterations

100 Iterations

K1451760

GORDON JOHNSON 38

38 Real Time Programming

250 Iterations

500 Iterations

1000 Iterations

K1451760

GORDON JOHNSON 39

39 Real Time Programming

2500 iterations

5000 Iterations

10000 Iterations

K1451760

GORDON JOHNSON 40

40 Real Time Programming

Performance

For the Hybrid implementation, the following tests were conducted, as presented in the

introduction of this report. The previous Serial Implementation results, are included below, as

a baseline comparison

Hybrid Implementation

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

2x Processes 2x Threads 0.0004098 0.0332343 2.849304

4x Processes 4x Threads 0.0004324 0.0253125 2.234793

6x Processes 2x Threads 0.0005120 0.0311172 2.532860

2x Processes 6x Threads 0.0003651 0.0265826 1.977537

Serial Implementation Results (Baseline)

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

Average Speed per

Iteration

0.0005381 0.0951833 8.722674

Note: Using 8x processes on the 100x100 grid, is considerably slower than its predecessor and

falls below the baseline value. This could have been an issue with processor usage at the time

of testing, it does not drop below the baseline for any other tests.

K1451760

GORDON JOHNSON 41

41 Real Time Programming

10000x10000 Grid Size (Average Speed)

100x100 Grid Size (Average Speed) 1000x1000 Grid Size (Average Speed)

K1451760

GORDON JOHNSON 42

42 Real Time Programming

Like the OpenMP implementation, this MPI version provides almost double the speed to the

application, compared to the serial version by using 2x processes. Providing the simulation

with x4 processes, provides the largest increase in acceleration compared to all other options.

Providing x6 and x8, displayed minor improvements respectively, but still show better

performance than the previous. The following graphs, show performance over time.

1000x1000 Grid Size (Performance per Iteration)

10000x10000 Grid Size (Performance per Iteration)

As can be seen from these charts, taken from the raw data, there is a gradual increase in seconds

taken, indicative of a decline in performance over time.

Also noted that the 100x100 grid with x8 threads, shows a decrease in performance. This could

have been an issue with processor usage at the time of testing and does not reflect in the other

tests with this amount of threads.

K1451760

GORDON JOHNSON 43

43 Real Time Programming

Evaluation

In conclusion, using Multi-Threaded or Multi-Processed technologies, adds considerable value

to the overall performance of an application. The table highlights the best performing

configurations, for each category of implementation, within each grid size.

Grid Size 100 x 100 1,000 x 1,000 10,000 x 10,000

Serial 0.0005381 0.0951833 8.722674

OpenMP 0.0001213

x6 Threads

0.0187689

x8 Threads

1.723995

x8 Threads

MPI 0.0003442

x4 Processes

0.0302868

x6 Processes

2.706252

x6 Processes

Hybrid 0.0003651

x2 Processes

x6 Threads

0.0253125

x4 Processes

x4 Threads

1.977537

x2 Processes

x6 Threads

As can be seen from the table above, OpenMP, performed the best across every scenario. The

graphics below, make these results more visual. The 100 x 100 grid results where more varied,

this highlights that these methods are more suited to a higher demanding application.

K1451760

GORDON JOHNSON 44

44 Real Time Programming

The 1,000 x 1,000 and 10,000 x 10,000 grid sizes, show a more consistent result. In both cases,

OpenMP performed 5.07 and 5.06 times faster, than the baseline serial implementation. MPI,

while performing slower than the OpenMP method, still provided extremely fast performance

at 3.14 and 3.22 time faster than the baseline. The Hybrid implementation, improved the

performance of the vanilla MPI version, by making the 1,000 x 1,000 test 3.76 times faster than

baseline, however the 10,000 x 10,000 test, saw the largest performance boost of 4.41 times

faster.

OpenMP, was considerably easier to implement into a serial model, by targeting specific loops

where the application was demanding. Making this a cost-effective implementation, for overall

performance increase.

The MPI implementation, required much more consideration and amendments to the serial

version. To achieve message passing, additional loops where implemented, to ensure

appropriate information was gathered, prior to evaluation of the states. These additional

requirements provide a larger overhead, which could impede the performance of the MPI and

Hybrid version. However, on larger scale infrastructure / applications, I would assume MPI

would be more in its element, especially with multiple infrastructures across networked

processing units. Mixing this with a Hybrid implementation, has also proved advantages when

performance is key.

K1451760

GORDON JOHNSON 45

45 Real Time Programming

References

Manekar. A, Poundekar. M, Gupta. H, Nagle. M (2012) ‘A Pragmatic Study and Analysis of

Load Balancing Techniques in Parallel Computing’, International Journal of Engineering

Research and Applications, 2(4), pp.1914-1918.

MSDN (2018) Microsoft MPI. Available at: https://msdn.microsoft.com/en-

us/library/bb524831(v=vs.85).aspx (Accessed: 01 April 2018)

OpenMP (2018) The OpenMP API specification for parallel programming. Available at:

http://www.openmp.org/ (Accessed: 29 March 2018)

https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
http://www.openmp.org/

