

Digital Media Final
Project Report

MSc Game Development (Programming)

Student Name: Gordon Johnson

K Number: 1451760

Project Title: Virtual University RPG

Supervisor: Vasileios Argyriou

The type of project is a BODY of WORK

WARRANTY STATEMENT

This is a student project. Therefore, neither the student nor Kingston University

makes any warranty, express or implied, as to the accuracy of the data nor

conclusion of the work performed in the project and will not be held responsible

for any consequences arising out of any inaccuracies or omissions therein.

Gordon Johnson
K1451760

K1451760

GORDON JOHNSON 1

1 DMK Final Project

Table of Contents
Project Links .. 3

Abstract .. 3

Introduction and Background .. 3

Analysis.. 4

Stakeholders ... 4

Methodology .. 5

Technologies .. 6

Game Engine .. 6

Integrated Development Environment .. 6

Version Control .. 6

Third Party Assets .. 6

Requirements .. 7

Functional Requirements .. 7

Non-Functional Requirements .. 7

Design .. 8

Wire Frames ... 8

Login UI ... 8

Administration UI ... 13

Student UI ... 20

Technical Documentation .. 28

Entity Relationship Diagram .. 28

Class Diagram .. 29

Dependency Graph ... 30

Implementation .. 31

uMMORPG .. 31

School Scene... 32

Integration of assets .. 32

Custom Avatars .. 33

Camera Position .. 34

Mobile UI ... 34

Administrator Implementation ... 35

Quiz Implementation .. 38

Lecture Implementation ... 43

K1451760

GORDON JOHNSON 2

2 DMK Final Project

Database Implementation ... 47

Evaluation .. 54

Future Improvements ... 54

References .. 55

References .. 55

Technical References ... 55

Asset References .. 56

K1451760

GORDON JOHNSON 3

3 DMK Final Project

Project Links
Box URL: https://kingston.box.com/s/zqp9vq0ywyp37t6jv5x22xziudpzfdaf

YouTube URL: https://youtu.be/_6Pqcjq3WkY

GitHub URL: https://github.com/LordGee/VirtualUniversity

Abstract
The project is to create a Virtual University game, incorporating features from the Role-Playing

Game genre, based on research conducted by (Argyriou et al., 2010). This will be a Massive

Multiplayer Online game, allowing many students and academics to simultaneously be

immersed within the world. The initial purpose of this Virtual University will be to provide

online Lectures, Workshops and Quizzes, within a fun and exciting environment. The artefact

will be developed to a high-level, utilising existing libraries and assets where possible.

(Johnson, 2018)

Introduction and Background
The aim is to develop a gamified University environment in the form of a Role Player Game,

inspired by previous research conducted by (Argyriou et al., 2010) ‘Virtual university as a role-

playing game’. It will be a Massive Multiplayer Online experience, allowing many users to log

into the world simultaneously. Since this report was published, technology requirements have

changed, making it necessary to build a mobile platform, thus extending the accessibility of

this product.

The Virtual University would primarily target University Lecturers and their Students. With

lecturers taking on the role of administrators, allowing them to add content and activities, while

students participate in the activities created.

This project would provide huge benefits to both lecturers and students, including, access for

lecturers to virtually contribute to quizzes, lectures and workshops and an expanded

geographical reach for potential student enrolment. Students will be able to participate in a

social and interactive game world, within a gamified learning experience, regardless of their

personal circumstances or physical location.

Whilst various gamified learning experiences exist, very few have opted for an RPG style game

world to host in. A popular learning tool is (FrogPlay, 2018) which provides quizzes and

assignment allocation, in a gamified environment and motivates students through games and

rewards.

A more recent development is Minecraft Education Edition, which provides a code learning

tool in the Minecraft Universe. This includes the creation of labs such as the Chemistry update,

which provides the building blocks of matter, combining elements into useful compounds, from

which lessons can be created in a safe learning environment. (Mojang, 2018)

https://kingston.box.com/s/zqp9vq0ywyp37t6jv5x22xziudpzfdaf
https://youtu.be/_6Pqcjq3WkY
https://github.com/LordGee/VirtualUniversity

K1451760

GORDON JOHNSON 4

4 DMK Final Project

Analysis

Stakeholders
Stakeholders are the entities affected by this product.

Entity Description

University

Provided with a new and exciting service to offer their members

(staff and students alike). With the potential of extending the

Universities Geographical reach.

Academic Staff

Able to create content, quizzes, lectures and workshops whilst

monitoring student progress. Will provide an additional method

of communication between staff and students.

Students

Able to receive content, partake in lectures and workshops,

communicate with academics in real time and socialise with

their peers, regardless of their personal situation or location.

K1451760

GORDON JOHNSON 5

5 DMK Final Project

Methodology

A variation of an Agile Scrum methodology will be used, utilising Kanban boards to manage

ongoing activities. Kanban boards are primarily a team management tool, despite this being an

independent project, it will still be beneficial in the management of the project. The solution

chosen to deliver this tool is (Taiga, 2018) which will aid in task-based management, the board

consists of five main columns (New, Ready, In Progress, Ready for Test and Done), plus an

additional column to hide older archived items.

Figure 1 - Kanban Board

K1451760

GORDON JOHNSON 6

6 DMK Final Project

Technologies
The following defines the tools and versions that will be used for this project.

Game Engine

The main development tool will be Game Engine, the selection of this tool was based on

experience and suitability. The decision was made to utilise the Unity 3D engine (Unity 3D,

2018), which the project team has the greatest exposure and experience with. The latest version

at the start of this project was Unity 2018.1.0f2 and throughout the project has successfully

been upgraded to Unity 2018.2.7f1. In the project proposal, it was decided not to use patch

updates throughout the project so as not to lose certain features support.

Integrated Development Environment

The IDE utilised throughout this project, is Visual Studio Enterprise 2017 IDE (Microsoft,

2018), this will be used for C# coding. The version at the start of this project was 15.6.7 regular

updates throughout the lifecycle have been applied through to version 15.8.4. A plugin for

Visual Studio will be utilised, JetBrains ReSharper Ultimate (JetBrains, 2018), providing

useful features such as improved intellisense, auto include namespaces and quick refactoring.

Version Control

GitHub (GitHub, 2018) will be the Version Control solution, utilised for this project. Commits

will be actioned on a regular basis to the repository, all commits will be error free, allowing

successful builds to be recreated at every successful commit. This Git facility is a great tool for

keeping track of the development history and provides a contingency in case of any unforeseen

issues.

Third Party Assets

The two main assets that will be implemented into this project, will be supplied by the project

supervisor (Vasileios Argyriou). The first asset is the uMMORPG (uMMORPG, 2018) which

provides a starting structure / template for a Massive Multiplayer Online Role-Playing Game.

Providing a suitable Network Manager, which handles the connection between a Server and

multiple client users and a standard RPG style User Interface. The second asset is a 3D Model

environment of a school (Tirgames, 2018), including offices, lecture theatre and surrounding

areas, this will form the Virtual University.

K1451760

GORDON JOHNSON 7

7 DMK Final Project

Requirements
The following requirements define the project aims and how to achieve them.

Functional Requirements

All Users:

• Able to register a new standard account.

• Create an avatar profile during registration.

• Can navigate the Virtual University world.

• Can use the in-game chat function, to communicate with all or individual users.

Admins (Academic Staff):

• Create and edit quizzes.

• Create and edit lectures.

• Create and edit workshops.

• View and give feedback on student submissions.

Super Admins (Product Owner):

• Can upgrade standard User accounts to an Admin account.

Students:

• Partake in Quizzes relevant to their Course / Subjects.

• Partake in Lectures relevant to their Course / Subjects.

• Partake in Workshops relevant to their Course / Subjects.

• View feedback received from Admins.

Non-Functional Requirements

• Windows 10 Compatible.

• Android SDK, compatible with version 7 and Higher.

• Linux Ubuntu Server 18.04 (for hosting a Headless Build).

• Active internet connection required.

K1451760

GORDON JOHNSON 8

8 DMK Final Project

Design

Wire Frames
Utilising Adobe XD CC, the following wireframes have been designed as a rough guide to

illustrate the layout and sequence of events. As the target platform is mobile devices, there is a

limited offering of input and selection options on each screen, this provides additional space

for a larger selection area of elements and buttons.

Note: Layout decisions may change over the lifecycle of the project.

Login UI

When launching the application, the user will be presented with a Login Screen.

Step 01 – Login Screen

Figure 2 - Step 01 - Login Screen UI

The user is prompted to enter their username into the input box. The user can then select either

to create a new account or login to an existing one. A quit option is also available to close the

application.

Selecting either Login or Create New Account will take the user to the Enter Password page.

Wording should change depending on the option selected.

K1451760

GORDON JOHNSON 9

9 DMK Final Project

Step 02 – Enter Password Screen

Figure 3 - Step 02 - Enter Password Screen UI

The user proceeds to enter either, their previously chosen or desired password. Upon

completion, the Login button (or Register button) should be selected, this will take the user to

the next screen which is Server selection.

K1451760

GORDON JOHNSON 10

10 DMK Final Project

Step 03 – Select Server Screen

Figure 4 - Step 03 - Select Server Screen UI

The Server Select screen is a temporary placement, until a live server with a fixed IP address

is available. Selecting Host Server, allows the user’s computer to act as both server and client.

If the Login button is selected, a connection will be attempted on the selected server, if no

connection can be established, a timeout will occur, and the connection aborted.

Note: Once there is a dedicated server this screen will be obsolete, with connection established

automatically.

K1451760

GORDON JOHNSON 11

11 DMK Final Project

Step 04 – Select Course Screen (Only whilst registering a new account)

Figure 5 - Step 04 – Select Course Screen UI

The Select Course screen only appears during the registering of a new account. The user selects

their course from the drop-down options.

K1451760

GORDON JOHNSON 12

12 DMK Final Project

Step 05 – Select Character Screen

Figure 6 - Step 05 – Select Character Screen UI

The character selection allows users to select, from pre-defined avatars, which one will

represent them within the game.

Note: Long term a character creation option will be added, allowing users to name and define

their avatars appearance.

K1451760

GORDON JOHNSON 13

13 DMK Final Project

Administration UI

The main administration is only available to users with Admin Account status. It can be reached

with any of the Non-Playing Characters (NPC) within the game world.

Figure 7 - Administration View UI

The Administrator view provides options that are only available to users with an administration

profile. These options allow the admin to manage Courses, Quizzes, Lectures and Workshop

content.

Course Management

Due to Quizzes, Lectures and Workshops being course / subject dependent, it is important to

ensure new courses can be added to the system and once allocated, allow for subjects to be

assigned to individual courses.

Figure 8 - Course Management UI

The admin can add a new course to the database, by entering the course name into the input

box, after which an option to add subjects can be applied to individual courses.

K1451760

GORDON JOHNSON 14

14 DMK Final Project

Quiz Management

When entering the Quiz Manager section, the following management view will be presented.

Figure 9 - Quiz Management UI

The Admin will be presented with a drop-down option box, for any quizzes they have created.

Allowing them to manage/amend the selected quiz. An option to create new quizzes is

available, the following user interface steps describe this process.

K1451760

GORDON JOHNSON 15

15 DMK Final Project

Step 01 / 02 – Select Course and Subject

Figure 10 - Step 01 / 02 – Select Course and Subject UI

The first steps when creating a new quiz, will be to define the course and subject that it relates

to, by selecting the relevant information in the drop-down options.

Step 03 – Set a Quiz Name

Figure 11 - Step 03 – Set a Quiz Name UI

The next step is to provide a unique name for the quiz. If the name is already in use, an error

message should be returned asking the user to choose a new name.

K1451760

GORDON JOHNSON 16

16 DMK Final Project

Step 04 – Set the Question

The following screens will iterate through, until the user exits the process. This allows multiple

questions to be applied one after another.

Figure 12 - Step 04 – Set the Question UI

This step allows the user to define a question for the desired quiz, once implemented each

question can be modified via the initial Quiz Manager screen.

Step 05 / 06 – Add correct and Incorrect Answers

Figure 13 - Step 05 / 06 – Add correct and Incorrect Answers UI

Initially the tool prompts the user to input the correct answer first, it then asks for three wrong

answers. As with the questions, these answers can be amended later. Once set, the process

loops back to Step 04.

K1451760

GORDON JOHNSON 17

17 DMK Final Project

Lecture Management

Currently a pre-requisite for implementing a new lecture, is to ensure a video is already

uploaded to a suitable web hosting, enabling the user to supply a direct link URL to the MP4

or AVI file.

Step 01 - Enter Lecture Title

Figure 14 - Step 01 - Enter Lecture Title UI

The first step will be to provide the new lecture with a unique lecture title. If the title already

exists, an error message should be returned requesting a unique title.

Step 02 / 03 – Select Course and Subject

Figure 15 - Step 02 / 03 – Select Course and Subject UI

The next step is to define the course and subject that it relates to, this can be done by selecting

the relevant information in the drop-down options.

K1451760

GORDON JOHNSON 18

18 DMK Final Project

Step 04 – Provide URL to Video

Figure 16 - Step 04 – Provide URL to Video UI

A video needs to be uploaded to web hosting, in order to provide a URL to the video location.

Currently YouTube URLs will not work with Unity’s video player.

Step 05 / 06 – Set a Break Point and Define a Question

Figure 17 - Step 05 / 06 – Set a Break Point and Define a Question UI

Setting break points throughout a video lecture, breaks up the watching of a video and provides

a more involved viewing experience. This is optional and can be skipped, however, step 05

requires a specified time within the video to break. At this given time a question can then be

defined, similar to the quiz management process, although only one question can be presented

per break point.

K1451760

GORDON JOHNSON 19

19 DMK Final Project

Step 07 / 08 – Add correct and Incorrect Answers

Figure 18 - Step 05 / 06 – Add correct and Incorrect Answers UI

Initially these steps ask for the Admin to input the correct answer first, followed by three wrong

answers. As with the questions, these answers can be amended later if required. The process

then loops back to Step 05.

K1451760

GORDON JOHNSON 20

20 DMK Final Project

Student UI

The student user interface is only available to users with Student Account status and can be

reached by visiting any of the Non-Playing Characters (NPC) within the game world.

Figure 19 - Student View UI

The student is presented with a unique UI view, offering News information, teleportation to

various areas within the game world, quizzes, lectures and workshops.

K1451760

GORDON JOHNSON 21

21 DMK Final Project

Participate in a Quiz

For a student to participate in a quiz, the user needs to select the Quiz option from the main

student view user interface.

Step 01 – Quiz Selection

Figure 20 - Step 01 – Quiz Selection UI

The quizzes available for selection will be course based, for example a student studying Art

will not see a quiz for students studying Mathematics. The student can select a quiz by clicking

the Select button next to the desired quiz name.

K1451760

GORDON JOHNSON 22

22 DMK Final Project

Step 02 – Participate in Quiz

Figure 21 - Step 02 – Participate in Quiz UI

Once a quiz has been selected, the main quiz UI will begin. This UI contains a countdown timer

at the top in minutes and seconds. A large portion of the UI is dedicated to the question,

ensuring the question is legible, with four answer buttons containing the multiple-choice

answers for the given question.

Selecting an answer will provide immediate feedback to the student, of either correct or wrong.

K1451760

GORDON JOHNSON 23

23 DMK Final Project

Step 03 – Results for the Quiz

Figure 22 - Step 03 – Results for the Quiz UI

Once all questions have been answered, the student will be taken to the Results UI. The details

of all questions asked and if answered correctly or not. If the question was answered

incorrectly, the correct answer will be displayed.

K1451760

GORDON JOHNSON 24

24 DMK Final Project

Participate in a Lecture

For a student to watch a lecture, the user needs to select the Lecture option from the main

student view UI.

Step 01 – Lecture Selection

Figure 23 - Step 01 – Lecture Selection UI

Only course appropriate lectures will appear. The student can select a lecture, by clicking the

Select button next to the desired lecture name.

K1451760

GORDON JOHNSON 25

25 DMK Final Project

Step 02 – Watch the Lecture

Figure 24 - Step 02 – Lecture Theater Screenshot

Once a lecture has been selected, the student will be teleported to the lecture theatre, where the

lecture will begin.

K1451760

GORDON JOHNSON 26

26 DMK Final Project

Step 03 – Break Point Question

Figure 25 - Step 03 – Break Point Question UI

At previously defined points, the lecture will pause, and a question will appear. These questions

have no time limit. The lecture will only resume once the question has been answered.

K1451760

GORDON JOHNSON 27

27 DMK Final Project

Step 04 – Lecture Results

Figure 26 - Step 04 – Lecture Results UI

Once the lecture has concluded, the student will be taken to the Results UI. This will detail all

questions asked and summarise if answered correctly or not. If the question was answered

incorrectly, the correct answer will be displayed.

K1451760

GORDON JOHNSON 28

28 DMK Final Project

Technical Documentation

The following diagrams are working documents, which are amended throughout the lifecycle

of this project.

Entity Relationship Diagram
The entity relationship diagram (ERD), defines the working structure of the custom attributes

of the project database and its relationships.

Figure 27 - Entity Relationship Diagram

K1451760

GORDON JOHNSON 29

29 DMK Final Project

Class Diagram
The following class diagram defines the structure of the classes, attributes and operation.

Figure 28 - Class Diagram

K1451760

GORDON JOHNSON 30

30 DMK Final Project

Dependency Graph
The following Visual Studio diagram provides a visual representation of the classes and their dependences.

Figure 29 - Dependency Graph

K1451760

GORDON JOHNSON 31

31 DMK Final Project

Implementation

Third Party Assets / Tools

Various third-party tools were used in the implementation of this project, the project supervisor

provided the main two. These provided a starting base for implementation to be built around.

These were initially imported into a playground project for testing and manipulation.

uMMORPG

The uMMORPG tool (uMMORPG, 2018), provides many features of a typical Role-Playing

style game, as well as a demo scene to help understand how the tool operates. A key feature is

its server / client infrastructure, enabling a developer to rapidly get their game online.

Figure 30 - uMMORPG Scene

Many of the features were not required in this project. Once installed an abridged version was

exported into a new package, with the relevant Scripts, UI, Player and Network Management.

K1451760

GORDON JOHNSON 32

32 DMK Final Project

School Scene

The school scene (Tirgames Assets, 2018), provides a selection of school environment models.

This asset provided the world in which the game would be played.

Figure 31 - Day School Scene

This asset came with components which would not be used in this project, so an abridged export

was made excluding the night, abandoned and standard day implementations.

Integration of assets

Once both assets had been exported into their minified versions, they were implemented into

the project. Various testing took place to ensure they both worked as before, this included login

features, database integration and standard UI. Most of the UI had lost its prefab connection

within the Unity Inspector despite these prefabs being included in the export, these were

manually added back into their required locations.

Due to the lack avatars, which were not taken over from the original files, actual gameplay

could not be tested at this point.

K1451760

GORDON JOHNSON 33

33 DMK Final Project

Custom Avatars
To play the game and test movement, an avatar needed to be implemented. Using the

playground project and the original avatars, the first playable avatar was created called Boy

(Game Asset Studio, 2018).

This proved a challenging task and was not well

documented by uMMORPG. However, a video

explaining the process (Gladius Studios, 2016)

provided a good insight.

This involved reconfiguring the colliders, animations

and body components. After completion, testing found

an issue where the character would start walking

backwards and would begin to fly higher and higher

with every move command.

Through trial and error, it was discovered that the

armature component, that initially appeared

redundant, needed to remain in the prefab. This fixed

the flying issue.

Using this as a template, a Girl (Asobiya, 2018) avatar was created. The implementation of this

avatar was successful first time. Finally, an avatar was required for the Non-Player Characters,

for which a model of a suited man (Studio New Punch, 2016) was utilised.

Figure 32 - Boy Avatar (Game Asset Studio, 2018)

Figure 34 - Girl Avatar (Asobiya, 2018)

Figure 33 - NPC Avatar (Studio New Punch, 2016)

K1451760

GORDON JOHNSON 34

34 DMK Final Project

Camera Position

Following the design wireframe model, and after much trial and error, the camera settings were

set at the following positions.

Setting Name Setting Value

Initial X Angle 25

Initial Distance 4

Min Distance 4

Max Distance 5

X Min Angle 15

X Max Angle 50

Camera Near Clipping Planes 2

Mobile UI
Initial testing on an android mobile phone highlighted some problems, including the initial UI

being insufficient to allow successful selection and navigation. This required UI’s to be

implemented at a much larger size, ensuring input boxes and buttons were easily selectable on

a small mobile screen.

To aid the new implementation, Simple UI (Unruly Games, 2017) was used for buttons, panels

and icons. This provided a cosmetic element that made the UI more visually appealing, as seen

in figure 35.

Figure 35 - Login UI

K1451760

GORDON JOHNSON 35

35 DMK Final Project

Administrator Implementation
While implementing the administration section, two separate methods were used. Initially the

process of navigating from screen to screen involved separate panels that would activate and

deactivate, depending on what was required to be displayed.

To manage UI Groups from the Unity Inspector, the following structure was created so each

group could have its own unique panel to load with the title defined.

[System.Serializable]
public struct UIAdminGroups {
 public GameObject groupObject;
 public string title;
}

When the administration access is selected, the following provides the UI to a starting position.

 public void BeginAdministrationUI() {
 backPanel.SetActive(true);
 current = groupAdmin;
 current.groupObject.SetActive(true);
 SetHeadingText(current.title);
 }

The following method provides a helper to close the previous UI and open the next, by passing

in the desired group.

 private void DeactivateActivateGroup(UIAdminGroups open) {
 current.groupObject.SetActive(false);
 current = open;
 current.groupObject.SetActive(true);
 SetHeadingText(current.title);
 }

However, when moving onto the quiz and lecture administration, there were simply too many

UI elements to manage, so a more stream lined approach was taken. This second method

involved reusing elements within the UI and changing their values and requirements within the

code.

To be able to do this successfully, an Enum was created to define the different states that the

UI could be in.

 public enum UI_STATE {
 Begin,
 QuestionManager,
 SelectCourse,
 SelectSubject,
 NameQuiz,
 NumberOfQuestions,
 AddQuestion,
 AddAnswer,
 COUNT
 };
 private UI_STATE currentUI;

K1451760

GORDON JOHNSON 36

36 DMK Final Project

For example, the begin state would ensure that the UI was set for this purpose.

 private async void BeginState() {
 ActivateAllUi();
 inputBox.GetComponent<InputField>().text = "";
 inputBox.SetActive(false);
 admin.SetHeadingText("Add / Edit Quizzes");
 content = new List<string>();
 content = await Database.GetQuizNames();
 PopulateDropbox.Run(ref dropBox, content, "Select Quiz");
 primaryButton.GetComponentInChildren<Text>().text = "Manage\nSelected\nQuiz";
 secondaryButton.GetComponentInChildren<Text>().text = "Create\nNew\nQuiz";
 }

The Activate All UI method provides a default state for all the elements and reverses any

special requirements from a previous state, such as character limits, input type, etc.

 private void ActivateAllUi() {
 inputBox.SetActive(true);
 dropBox.gameObject.SetActive(true);
 primaryButton.SetActive(true);
 secondaryButton.SetActive(true);
 backButton.SetActive(true);
 backButton.GetComponentInChildren<Text>().text = "Back";
 inputBox.GetComponent<InputField>().contentType =
 InputField.ContentType.Standard;
 inputBox.GetComponent<InputField>().characterLimit = 255;
 inputBox.GetComponentInChildren<Text>().text = "";
 inputBox.GetComponent<InputField>().text = "";
 }

When a button is pressed, a switch case checks the current state and provides the required

response, typically changing the current state to the next and executing a method to set the new

UI.

public async void PrimaryButton() {
 switch (currentUI) {
 case UI_STATE.Begin:
 currentUI = UI_STATE.QuestionManager;
 isNew = false;
 break;
 case UI_STATE.SelectCourse:
 currentUI = UI_STATE.SelectSubject;
 SelectSubject();
 break;

}
}

K1451760

GORDON JOHNSON 37

37 DMK Final Project

For example, if the state was set to Select Course the state would update to Select Subject, then

initiate the Select Subject method to update the UI.

private async void SelectSubject() {
 quiz.CourseName = dropBox.GetComponent<Dropdown>()
 .options[dropBox.GetComponent<Dropdown>().value].text;
 Message("Course Added");
 ActivateAllUi();
 inputBox.SetActive(false);
 secondaryButton.SetActive(false);
 admin.SetHeadingText("Select a Subject");
 content = new List<string>();
 content = await Database.GetSubjectsLinkedToCourse(quiz.CourseName);
 PopulateDropbox.Run(ref dropBox, content, "Select Subject");
 primaryButton.GetComponentInChildren<Text>().text = "Select\nSubject";
 backButton.GetComponentInChildren<Text>().text = "Exit Quiz\nManagement";
}

Once the workflow as described in the design, is completed, a call to the database is made to

insert the data.

private async Task AddQuizToDatabase() {
 quiz.QuizTimer = Int32.Parse(inputBox.GetComponent<InputField>().text);
 quiz.QuizId = await Database.GetNextID_Crud(Database.Table.Quizzes);
 Database.CreateNewQuiz(quiz.QuizId, quiz.QuizName, quiz.QuizTimer,
 FindObjectOfType<Player>().account, quiz.SubjectName);
}

K1451760

GORDON JOHNSON 38

38 DMK Final Project

Quiz Implementation
The Quiz section begins when a student navigates there via the NPC panel, from which the

method initialises all the starting UI.

public async void InitStart() {
 player = FindObjectOfType<NetworkManagerMMO>().loginAccount;
 chosenQuiz = -1;
 quizSelectionPanel.SetActive(true);
 quizzes = new List<Quiz>();
 hasQuestionBeenAllocated = new List<bool>();
 questionIndexOrder = new List<int>();
 quizzes = await Database.GetStudentQuizzes(quizzes, player,
 await Database.GetPlayerCourseName(player));
 PopulateQuizzes();
 selectionQuiz = true;
 startQuiz = false;
 currentTime = 0.0f;
}

This initialises the selection panel, setting initial variables and then populating the quiz data

from the database.

private void PopulateQuizzes() {
 UIUtils.BalancePrefabs(slotPrefab.gameObject, quizzes.Count,
 quizContent);
 for (int i = 0; i < quizzes.Count; i++) {
 QuizSelectionSlot slot = quizContent.GetChild(i).
 GetComponent<QuizSelectionSlot>();
 slot.nameText.text = quizzes[i].QuizName;
 int count = i;
 slot.selectButton.onClick.SetListener(async () => {
 chosenQuiz = count;
 results = new List<QuestionResults>();
 if (quizzes[chosenQuiz].result_id >= 0) {
 results_id = quizzes[chosenQuiz].result_id;
 } else {
 results_id = await Database.CreateNewResultsForChosenQuiz
 (player, quizzes[chosenQuiz].QuizId);
 }
 SelectedQuiz();
 });
 }
}

The populate quizzes method did not initially work, due to the count variable being initialised

and set inside of the lambda function. Once this was declared outside, the method worked.

K1451760

GORDON JOHNSON 39

39 DMK Final Project

Once a quiz has been selected, the questions are prepared and randomised.

private async void PrepareQuestionsAndAnswers() {
 quizzes[chosenQuiz].Questions =
 await Database.GetQuestionsForChosenQuiz(quizzes[chosenQuiz].QuizId);
 hasQuestionBeenAllocated = new List<bool>();
 questionIndexOrder = new List<int>();
 for (int i = 0; i < quizzes[chosenQuiz].Questions.Count; i++) {
 hasQuestionBeenAllocated.Add(false);
 }
 while (!AllocationTest.HasAllocationFinished(hasQuestionBeenAllocated)) {
 int index = Random.Range(0, quizzes[chosenQuiz].Questions.Count);
 if (!hasQuestionBeenAllocated[index]) {
 if (! await Database.HasQuestionBeenAttempted(quizzes[chosenQuiz].
 Questions[index].question_id, results_id, false)) {
 questionIndexOrder.Add(index);
 }
 hasQuestionBeenAllocated[index] = true;
 }
 }
 if (quizzes[chosenQuiz].time_elapsed > 0) {
 quizTimer = (quizzes[chosenQuiz].QuizTimer * _CONST.SECONDS_IN_MINUTE)
 - quizzes[chosenQuiz].time_elapsed;
 } else {
 quizTimer = quizzes[chosenQuiz].QuizTimer * _CONST.SECONDS_IN_MINUTE;
 }
 lastUpdate = quizzes[chosenQuiz].QuizTimer * _CONST.SECONDS_IN_MINUTE;
 startQuiz = true;
 NextQuestion();
}

The above method only gets called at the start of a quiz selection, after which each question

presented calls the Next Question method. This sets the question into the UI and then

randomises the potential answers.

private void NextQuestion() {
 questionText.text = quizzes[chosenQuiz].
 Questions[questionIndexOrder[currentQuestion]].question;
 hasAnswerBeenAllocated = new List<bool>();
 answerIndexOrder = new List<int>();
 for (int i = 0; i < quizzes[chosenQuiz].
 Questions[questionIndexOrder[currentQuestion]].
 answers.Count; i++) {
 hasAnswerBeenAllocated.Add(false);
 }
 while (!AllocationTest.HasAllocationFinished(hasAnswerBeenAllocated)) {
 int index = Random.Range(0, quizzes[chosenQuiz].
 Questions[questionIndexOrder[currentQuestion]].answers.Count);
 if (!hasAnswerBeenAllocated[index]) {
 answerIndexOrder.Add(index);
 hasAnswerBeenAllocated[index] = true;
 }
 }
}

K1451760

GORDON JOHNSON 40

40 DMK Final Project

Once the answers are randomised, the answer can be setup, concluding the question setup and

display.

private void SetupAnswerButton() {
 for (int i = 0; i < quizzes[chosenQuiz].
 Questions[questionIndexOrder[currentQuestion]].
 answers.Count; i++) {
 answerButtons[i].GetComponentInChildren<Text>().text
 = quizzes[chosenQuiz]
 .Questions[questionIndexOrder[currentQuestion]]
 .answers[answerIndexOrder[i]].answer;
 int count = i;
 answerButtons[i].onClick.SetListener(() => {
 selectedAnswer = answerIndexOrder[count];
 ConfirmAnswer();
 });
 }
}

When a question is answered by the user, the following method records the data and updates

the relevant database tables. Feedback is passed to the system message, to display to the user.

private void ConfirmAnswer() {
 QuestionResults result = new QuestionResults();
 result.fk_results_id = results_id;
 result.fk_answer_id = quizzes[chosenQuiz]
 .Questions[questionIndexOrder[currentQuestion]]
 .answers[selectedAnswer].answer_id;
 result.fk_question_id = quizzes[chosenQuiz]
 .Questions[questionIndexOrder[currentQuestion]]
 .question_id;
 result.isCorrect = quizzes[chosenQuiz]
 .Questions[questionIndexOrder[currentQuestion]]
 .answers[selectedAnswer].isCorrect;
 results.Add(result);
 Database.UpdateResultsAfterQuestionAnswered(result, false);
 Database.UpdateTimeElapsed(results_id,
 (quizzes[chosenQuiz].QuizTimer * _CONST.SECONDS_IN_MINUTE)
 - (int)quizTimer);
 if (currentQuestion < questionIndexOrder.Count - 1) {
 currentQuestion++;
 if (result.isCorrect == 1) {
 FindObjectOfType<UISystemMessage>().NewTextAndDisplay("CORRECT");
 } else {
 FindObjectOfType<UISystemMessage>().NewTextAndDisplay("Wrong");
 }
 NextQuestion();
 } else {
 EndQuiz();
 }
}

K1451760

GORDON JOHNSON 41

41 DMK Final Project

Once all questions have been answered, the End Quiz method, calculates the results and

displays the results panel with feedback, as described in the design phase.

private async void EndQuiz() {
 // Update Database with result is_completed
 Database.UpdateResultsToIsCompleted(results_id);
 // Display Result Panel
 startQuiz = false;
 quizQuestionPanel.gameObject.SetActive(false);
 quizResultsPanel.gameObject.SetActive(true);
 resultsHeadingText.text = "Results for " + quizzes[chosenQuiz].QuizName;
 // Calculate result as percentage
 int totalQuestions = quizzes[chosenQuiz].Questions.Count;
 int totalCorrect = await Database.GetTotalCorrectFromResults(results_id, false);
 float percentage = 0;
 if (totalCorrect != 0 || totalQuestions != 0) {
 percentage = (float) (totalCorrect * 100) / totalQuestions;
 }
 resultsSubHeadingText.text = "Your Result is " + Math.Ceiling(percentage) + "%";
 // Show each question and define correct and wrong answers.
 UIUtils.BalancePrefabs(resultSlot.gameObject, totalQuestions, resultContent);
 for (int i = 0; i < totalQuestions; i++) {
 QuizResultSlot slot = resultContent.GetChild(i).
 GetComponent<QuizResultSlot>();
 slot.nameText.text = "Q" + (i + 1) + ". " + quizzes[chosenQuiz]
 .Questions[i].question;
 slot.correctAnswerText.text =
 "Correct Answer: " + await Database.GetCorrectAnswer(quizzes[chosenQuiz].
 Questions[i].question_id);
 if (await Database.GetWasAnswerCorrect(results_id,
 quizzes[chosenQuiz].Questions[i].question_id, false)) {
 slot.selectButton.GetComponentInChildren<Text>().text = "CORRECT";
 slot.selectButton.GetComponent<Image>().color = Color.green;
 } else {
 slot.selectButton.GetComponentInChildren<Text>().text = "Incorrect";
 slot.selectButton.GetComponent<Image>().color = Color.yellow;
 slot.wrongAnswerText.text =
 "You Answered: " + await Database.GetActualAnswer(
 await Database.GetStudentsAnswerId(results_id,
 quizzes[chosenQuiz].Questions[i].question_id, false));
 }
 }
}

K1451760

GORDON JOHNSON 42

42 DMK Final Project

Throughout the quiz, the following Update method has been executing to ensure the timers are

maintained and button are being listened for.

void Update() {
 if (selectionQuiz) {
 PopulateQuizzes();
 if (chosenQuiz != -1) {
 selectionQuiz = false;
 }
 } else if (startQuiz) {
 if (quizTimer < 0) {
 FindObjectOfType<UISystemMessage>().
 NewTextAndDisplay("Time has run out");
 EndQuiz();
 }
 if (lastUpdate - quizTimer >= 1.0f) {
 questionSubHeading.text = UpdateSubHeading();
 lastUpdate = quizTimer;
 questionHeading.text = UpdateHeading();
 }
 quizTimer -= Time.timeSinceLevelLoad - currentTime;
 currentTime = Time.timeSinceLevelLoad;
 SetupAnswerButton();
 }
}

A couple of helper methods. assist in presenting the heading and timer displays.

private string UpdateHeading() {
 return quizzes[chosenQuiz].QuizName + " - " +
 (currentQuestion + 1) + "/" + questionIndexOrder.Count;
}

private string UpdateSubHeading() {
 float minutes = Mathf.Floor(quizTimer / _CONST.SECONDS_IN_MINUTE);
 float seconds = quizTimer % _CONST.SECONDS_IN_MINUTE;
 string zero = (seconds < 10) ? "0" : "";
 return "Timer: " + minutes + ":" + zero + (int)seconds;
}

K1451760

GORDON JOHNSON 43

43 DMK Final Project

Lecture Implementation
The Lecture implementation has similarities to the Quiz Implementation.

Once a lecture has been selected, the following method initiates the lecture and determines if

the break points have already been completed or not.

private async void SelectedLecture() {
 if (await LoadChosenLecture()) {
 lectureCamera.gameObject.SetActive(true);
 breakComplete = new List<bool>();
 for (int i = 0; i < lectures[chosenLecture].
 break_points.Count; i++) {
 if (await Database.HasQuestionBeenAttempted(
 lectures[chosenLecture].break_points[i].
 break_question.question_id, attend_id, true)) {
 breakComplete.Add(true);
 } else {
 breakComplete.Add(false);
 }
 }
 startLecture = true;
 }
}

If the video successfully loads, the Load Chosen Lecture method is wrapped in a try catch

statement. This prevents the lecture camera being set to active with no video playing, which

could present problems for the user.

private async Task<bool> LoadChosenLecture() {
 try {
 video.Stop();
 video.url = lectures[chosenLecture].lecture_url;
 if (lectures[chosenLecture].watch_time > 0) {
 video.time = (double)lectures[chosenLecture].watch_time;
 }
 lectureSelectionPanel.SetActive(false);
 isQuestion = false;
 video.Play();
 video.isLooping = false;
 results = new List<QuestionResults>();
 if (lectures[chosenLecture].attend_id >= 0) {
 attend_id = lectures[chosenLecture].attend_id;
 } else {
 attend_id = await Database.CreateNewLectureAttend(player,
 lectures[chosenLecture].lecture_id);
 }
 return true;
 } catch (Exception e) {
 Debug.LogError("Lecture failed to load: " + e);
 return false;
 }
}

K1451760

GORDON JOHNSON 44

44 DMK Final Project

If a break points time frame is detected, then the video is paused, and the question, answers

and UI are prepared to be displayed.

private void BreakPoint(int index) {
 currentBreakIndex = index;
 video.Pause();
 lectureCamera.gameObject.SetActive(false);
 lectureQuestionPanel.gameObject.SetActive(true);
 PrepareQuestion();
 SetupAnswerButton();
 Database.UpdateLectureTime(attend_id,
 Mathf.FloorToInt((float)video.time));
}

Once the question has been answered, the lecture will resume.

private void ResumeLecture() {
 lectureCamera.gameObject.SetActive(true);
 lectureQuestionPanel.gameObject.SetActive(false);
 isQuestion = false;
 video.Play();
}

K1451760

GORDON JOHNSON 45

45 DMK Final Project

Once all the lecture video comes to an end, the results are recorded and displayed for the

user.

private async void EndLecture() {
 lectureCamera.gameObject.SetActive(false);
 lectureResultsPanel.gameObject.SetActive(true);
 video.Stop();
 isQuestion = true;
 startLecture = false;
 resultsHeadingText.text =
 "Results for " + lectures[chosenLecture].lecture_title;
 // Calculate result as percentage
 int totalQuestions = lectures[chosenLecture].break_points.Count;
 int totalCorrect =
 await Database.GetTotalCorrectFromResults(attend_id, true);
 float percentage = 0;
 if (totalCorrect != 0 || totalQuestions != 0) {
 percentage = (float)(totalCorrect * 100) / totalQuestions;
 }
 resultsSubHeadingText.text =
 "Your Result is " + Math.Ceiling(percentage) + "%";
 // Show each question and define correct and wrong answers.
 UIUtils.BalancePrefabs(resultSlot.gameObject,
 totalQuestions, resultContent);
 for (int i = 0; i < totalQuestions; i++) {
 QuizResultSlot slot = resultContent.GetChild(i).
 GetComponent<QuizResultSlot>();
 slot.nameText.text =
 "Q" + (i + 1) + ". " + lectures[chosenLecture].
 break_points[i].break_question.question;
 slot.correctAnswerText.text =
 "Correct Answer: "
 + await Database.GetCorrectAnswer(lectures[chosenLecture].
 break_points[i].break_question.question_id);
 if (await Database.GetWasAnswerCorrect(attend_id, lectures[chosenLecture].
 break_points[i].break_question.question_id, true)) {
 slot.selectButton.GetComponentInChildren<Text>().text = "CORRECT";
 slot.selectButton.GetComponent<Image>().color = Color.green;
 } else {
 slot.selectButton.GetComponentInChildren<Text>().text = "Incorrect";
 slot.selectButton.GetComponent<Image>().color = Color.yellow;
 slot.wrongAnswerText.text =
 "You Answered: " + await Database.GetActualAnswer(
 await Database.GetStudentsAnswerId(attend_id,
 lectures[chosenLecture].break_points[i].
 break_question.question_id, true));
 }
 }
 // update lecture attend table to be completed.
 Database.UpdateLectureTime(attend_id, Mathf.FloorToInt((float)video.time));
 Database.UpdateLectureAttendToComplete(attend_id);
}

K1451760

GORDON JOHNSON 46

46 DMK Final Project

Throughout the lecture, the following Update method has been executing whilst the video is

playing, checking for any break points which have not been completed. This update also checks

for when the video has finished in order to end the lecture.

void Update() {
 if (startLecture) {
 if (video.isPlaying) {
 for (int i = 0; i < lectures[chosenLecture].
 break_points.Count; i++) {
 // check for breakpoint questions
 if (video.time >= lectures[chosenLecture]
 .break_points[i].
 break_time && !breakComplete[i]) {
 // pause video and display question
 isQuestion = true;
 BreakPoint(i);
 breakComplete[i] = true;
 }
 }
 if (isPaused) {
 Database.UpdateLectureTime(attend_id,
 Mathf.FloorToInt((float)video.time));
 video.Pause();
 }
 } else if (!isPaused && !isQuestion) {
 video.Play();
 }
 if (video.frame > 1 &&
 video.frame == (long)video.frameCount) {
 EndLecture();
 }
 }
}

K1451760

GORDON JOHNSON 47

47 DMK Final Project

Database Implementation
As seen from the Technical Documentation class diagram, the Database class is the largest of

all the classes implemented. This class is organised over many files, allowing the separation of

concerns, this is done by declaring the class as a partial. These are broken down into the

following categories, User, Quiz, Student Quiz, Lectures and a Variable Helper.

Each category is responsible for initialising a Create Table if one does not already exist. This

ensures that when going to production, the structure of the database will self-create.

static void Initialize_User() {
 ExecuteNoReturn(@"CREATE TABLE IF NOT EXISTS accounts (
 name TEXT NOT NULL PRIMARY KEY,
 password TEXT NOT NULL,
 banned INTEGER NOT NULL DEFAULT 0,
 account_type TEXT NOT NULL DEFAULT 'Student',
 fk_course TEXT)");

 crud.DbCreate(@"CREATE TABLE IF NOT EXISTS Enrolled (
 enrolled_id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
 fk_account VARCHAR(255) NOT NULL,
 fk_course_name VARCHAR(255) NOT NULL)");
}

As can be seen from the above code snippet, there are two different methods called. The first

method, Execute No Return, is a method built into uMMORPG which is a flat SQLite Database

and will execute from the Game Server (Host) only. The second method Crud DB Create, is a

method that executes to a custom MySQL database hosted online, that can be executed by the

Game Server or the Client.

Initially, all database functions where built to execute to the original uMMORPG database.

However, when testing the network capabilities, the client machines were not able to access

the SQLite database. This was a fundamental flaw in the project and hindered the ability to

obtain one of its primary objectives. A second database was created to host and be available to

both client and host.

K1451760

GORDON JOHNSON 48

48 DMK Final Project

The first step was to create a dirty PHP API for all SQL statements to be passed. This is not a

recommended method and requires future improvements to secure this functionality but was

necessary due to time constraints.

<?php

 ini_set('display_errors', 1);

 ini_set('display_startup_errors', 1);

 error_reporting(E_ALL);

 class DBConnection {

 private $db_host = "localhost";

 private $db_name = "mychaosc_uni_rpg";

 private $db_user = "mychaosc_unirpg";

 private $db_pass = "yvJB2z8IUZQD";

 protected $pdoConn;

 public function __construct() {

 try {

 $this->pdoConn = new PDO(

 "mysql:host=$this->db_host;

 dbname=$this->db_name;

 charset=utf8mb4",

 $this->db_user, $this->db_pass);

 $this->pdoConn->setAttribute(PDO::ATTR_ERRMODE,

 PDO::ERRMODE_EXCEPTION);

 } catch (PDOException $ex) {

 echo 'CONNECTION ERROR: ' . $ex->getMessage();

 }

 }

 public function GetPdo() {

 return $this->pdoConn;

 }

 }

?>

The above class creates the connection to the database.

K1451760

GORDON JOHNSON 49

49 DMK Final Project

The following class, gets the instance of the database connection and prepares the SQL

statement, encoding any return value to JSON format.

<?php

 require_once('db_conn.php');

 class DBExecute extends DBConnection {

 protected $pdo;

 public function __construct() {

 parent::__construct();

 $this->pdo = $this->GetPdo();

 }

 public function Query($sql) {

 $statement = $this->pdo->prepare($sql);

 $statement->execute();

 if (substr($sql, 0, 6) === "SELECT") {

 $result = $statement->fetchAll(PDO::FETCH_ASSOC);

 return json_encode($result);

 }

 return 1;

 }

 }

 $DB = new DBExecute();

?>

The entry point for the API, accepts the SQL request and prints the results of the query.

<?php

 require_once('db/db_exe.php');

 if (isset($_GET['sql'])) {

 echo $DB->Query($_REQUEST['sql']);

 } else {

 echo "Welcome";

 }

?>

K1451760

GORDON JOHNSON 50

50 DMK Final Project

As all the functions requiring client access needed to be rebuilt, a variable helper was created

to prevent any typos in the SQL command for commonly used values.

public enum Table {
 Quizzes, Questions, Lectures, LectureBreakPoints,
 LectureAttend, Courses, CourseSubjects, Subjects,
 Results, Answers, ResultQA, Enrolled,
 COUNT
};

protected static string[] PrimaryKeyID = {
 "quiz_id", "question_id", "lecture_id", "break_id",
 "attend_id", "course_name", "course_subject_id",
 "subject_name", "result_id", "answer_id",
 "result_qa_id", "enrolled_id",
};
protected static string[] TableNames = {
 "Quizzes", "Questions", "Lectures", "LectureBreakPoints",
 "LectureAttend", "Courses", "CourseSubjects", "Subjects",
 "Results", "Answers", "ResultQA", "Enrolled",
};
protected static string[] ModelNames = {
 "quizResult", "questionResult", "lectureResult",
 "lectureBreakResult", "lectureAttendResult",
 "courseResult", "courseSubjectResult",
 "subjectResult", "resultResult", "answerResult",
 "resultQaResult", "enrolledResult",
};

Each Enum integer value, corresponds to the relevant primary key, table name and model name.

K1451760

GORDON JOHNSON 51

51 DMK Final Project

To be able to pass SQL queries over to the API, an IEnumerator was created for the Insert,

Update and Delete statements, typically these types of statements don’t return any results.

public void DbCreate(string sql) {
 StartCoroutine(Create(sql));
}

private IEnumerator Create(string sql) {
 string uri = _CONST.API_URL + sql;
 UnityWebRequest www = UnityWebRequest.Get(uri);
 yield return www.SendWebRequest();
 if (www.isNetworkError || www.isHttpError) {
 Debug.LogError(www.error + "\n" + sql);
 } else {
 Debug.Log("Create Result: " + www.downloadHandler.text
 + " SQL: " + sql);
 }
}

Select statements return results if they exist, so a special Read IEnumerator was implemented.

public IEnumerator Read(string sql, string model) {
 string uri = _CONST.API_URL + sql;
 UnityWebRequest www = UnityWebRequest.Get(uri);
 yield return www.SendWebRequest();
 if (www.isNetworkError || www.isHttpError) {
 Debug.LogError(www.error);
 } else {
 jsonString = ConvertJson(model, www.downloadHandler.text);
 Debug.Log("JSON: " + jsonString + "\nSQL: " + sql);
 yield return jsonString;
 }
}

As this method of accessing the database online presents a delay in return, the project had to

be upgraded to utilise .NET 4.0 features. This allowed the creation of async functions with

await commands before a database call, meaning the operation could not continue until the

results had been obtained. To help with this, the Async Await Support (Modest Tree Media,

2018) tool was obtained from the Unity asset store.

K1451760

GORDON JOHNSON 52

52 DMK Final Project

When the Json string is returned, it needs to be converted to include the relevant model assigned

to it.

private string ConvertJson(string model, string json) {
 string result = "{\"" + model + "\":" + json.Trim() + "}";
 return RemoveBadChar(result);
}

Previously the JSON string, used the trim method to remove any zero width characters, but

after upgrading to .NET 4.0 this no longer worked. To get around this, a method was created

to identify which index contained the character and rebuilt the string excluding it from the

result.

private string RemoveBadChar(string value) {
 char[] test = value.ToCharArray();
 int badCharIndex = -1;
 for (int i = 0; i < test.Length; i++) {
 if (test[i] == '\uFEFF') {
 badCharIndex = i;
 }
 }
 StringBuilder newValue = new StringBuilder();
 if (badCharIndex != -1) {
 for (int i = 0; i < test.Length; i++) {
 if (badCharIndex != i) {
 newValue.Append(test[i]);
 }
 }
 } else {
 newValue.Append(value);
 }
 return newValue.ToString();
}

An example of calling the database method for a Select statement.

public static async Task<List<string>> GetCourseNames() {
 int selection = (int) Table.Courses;
 string sql = "SELECT " + PrimaryKeyID[selection] + " FROM "
 + TableNames[selection] + " ORDER BY "
 + PrimaryKeyID[selection] + " ASC";
 string json = (string) await crud.Read(sql, ModelNames[selection]);
 DatabaseCrud.JsonResult value =
 JsonUtility.FromJson<DatabaseCrud.JsonResult>(json);
 List<string> result = new List<string>();
 for (int i = 0; i < value.courseResult.Count; i++) {
 result.Add(value.courseResult[i].course_name);
 }
 return result;
}

K1451760

GORDON JOHNSON 53

53 DMK Final Project

An example of calling the database for an Insert statement.

public static async Task<int> CreateNewResultsForChosenQuiz
 (string account, int quiz) {
 int selection = (int)Table.Results;
 int id = await GetNextID_Crud(Table.Results);
 crud.DbCreate("INSERT INTO " + TableNames[selection] + " ("
 + PrimaryKeyID[selection] + ", fk_account, fk_quiz_id" +
 ") VALUES (" + id + ", " + PrepareString(account)
 + ", " + quiz + ")");
 return id;
}

More elaborate functions can utilise different types of statements.

public static async void UpdateResults(QuestionResults result) {
 if (result.isCorrect == 1) {
 int selection = (int) Table.Results;
 string sql =
 "SELECT result_value FROM Results WHERE result_id = "
 + result.fk_results_id;
 string json = (string) await crud.Read(sql, ModelNames[selection]);
 DatabaseCrud.JsonResult value =
 JsonUtility.FromJson<DatabaseCrud.JsonResult>(json);
 int resultValue = value.resultResult[0].result_value + 1;
 crud.DbCreate("UPDATE Results SET result_value = " + resultValue +
 " WHERE result_id = " + result.fk_results_id);
 }
 crud.DbCreate(
 "INSERT INTO ResultQA (fk_result_id, fk_question_id, fk_answer_id)" +
 " VALUES (" + result.fk_results_id + ", " + result.fk_question_id +
 ", " + result.fk_answer_id + ")");
}

K1451760

GORDON JOHNSON 54

54 DMK Final Project

Evaluation

Throughout this project numerous challenges needed to be overcome, the first of which was

digesting the third-party asset tools such as uMMORPG. While their documentation

(uMMORPG, 2018) presented useful information to get started, there was limited guidance for

building beyond the scope of implementing custom functionality. For example, trying to obtain

the users account name proved difficult from the client machine perspective, which returned

the account name of the user on the host machine. To work around this, a copy of the users

account name was taken at login and stored, to ensure data being stored related to the correct

user.

The main aspect useful from the uMMORPG tool, was its ability to create the Server / Client

connection. In hindsight creating a tool like this manually would have provided much greater

control and knowledge over the implementation, although the personal challenge was to utilise

existing code and manipulate it to get the desired result.

The majority of time was focused on the database area, where custom data related to Subject,

Quiz and Lectures needed be stored. Ideally the issues with the client accessing the game server

database, would have been picked up early but due to the wait time in creating builds, most of

the testing was done in the Unity Editor. This assumption lead to most of the database class

being re-written, targeting a secondary database hosted online. This involved upgrading the

project to .NET 4.0 and utilising new features such as Async and Await.

Two third of the original requirements, Quizzes and Lectures, where implemented successfully.

Unfortunately, due to the rebuild of the database, the workshops are still under construction

and will be applied to a future iteration of this project.

Future Improvements

• Workshop implementation

• Tutorial Quests

• Group Quests

• Integrate UMA 2 for Character Creation

• Server hosting / Rebuild of the Network Manager

K1451760

GORDON JOHNSON 55

55 DMK Final Project

References

References
Argyriou, V., Sevaslidou, M., & Zafeiriou, S. (2010). Virtual university as a role playing

game. Education Engineering (EDUCON), 2010 IEEE, pp. 743-747.

FrogPlay (2018) FrogPlay - Now, you can learn and play at the same time. Available at:

https://www.frogplay.my/ (Accessed: 20 September 2018)

Johnson, G. (2018) DMK Final Project Proposal. Available at:

https://gordon.johnson7.co.uk/report/FP_proposal.pdf (Accessed: 20 September 2018)

Mojang (2018) Minecraft Education Edition. Available at: https://education.minecraft.net/

(Accessed: 20 September 2018)

Taiga (2018) Taiga.io – Love your Project. Available at: https://taiga.io/ (Accessed: 14

September 2018).

Technical References
GitHub (2018) GitHub Inc. Available at: https://github.com/ (Accessed: 06 May 2018)

Gladius Studios (2016) UMMORPG Tutorial Character Swap. Available at:

https://www.youtube.com/watch?v=SnWs1PsXnFk (Accessed: 25 May 2018)

JetBrains (2018) ReSharper - Visual Studio Extension for .NET Developers. Available at:

https://www.jetbrains.com/dotnet/ (Accessed 06 May 2018)

Microsoft (2018) Visual Studio IDE. Available at: https://www.visualstudio.com/vs/

(Accessed 06 May 2018)

Stack-overflow (2014) Strip Byte Order Mark from string in C#. Available at:

https://stackoverflow.com/questions/1317700/strip-byte-order-mark-from-string-in-c-sharp

(Accessed 09 September 2018)

Unity Answers (2001) Making a timer (00:00) minutes and seconds. Available at:

https://answers.unity.com/questions/45676/making-a-timer-0000-minutes-and-seconds.html

(Accessed 02 September 2018)

https://www.frogplay.my/
https://gordon.johnson7.co.uk/report/FP_proposal.pdf
https://education.minecraft.net/
https://taiga.io/
https://github.com/
https://www.youtube.com/watch?v=SnWs1PsXnFk
https://www.jetbrains.com/dotnet/
https://www.visualstudio.com/vs/
https://stackoverflow.com/questions/1317700/strip-byte-order-mark-from-string-in-c-sharp
https://answers.unity.com/questions/45676/making-a-timer-0000-minutes-and-seconds.html

K1451760

GORDON JOHNSON 56

56 DMK Final Project

Asset References
Asobiya (2018) Asobi-chan free. Available at:

https://assetstore.unity.com/packages/3d/characters/humanoids/asobi-chan-free-116360

(Accessed: 01 June 2018)

Bensound (2018) Adventure | Royalty Free Music. Available at:

https://www.bensound.com/royalty-free-music/track/adventure (Accessed: 20 September

2018)

Game Asset Studio (2018) Taichi Character Pack. Available at:

https://assetstore.unity.com/packages/3d/characters/taichi-character-pack-15667 (Accessed:

24 May 2018)

Modest Tree Media (2018) Async Await Support. Available at:

https://assetstore.unity.com/packages/tools/integration/async-await-support-101056

(Accessed: 09 September 2018)

Studio New Punch (2016) Man in a Suit. Available at:

https://assetstore.unity.com/packages/3d/characters/humanoids/man-in-a-suit-51662

(Accessed: 01 June 2018)

Tirgames Assets (2018) School Scene. Available at:

https://assetstore.unity.com/packages/3d/environments/urban/school-scene-66006 (Accessed:

06 May 2018)

uMMORPG (2018) Documentation – uMMORPG. Available at:

https://ummorpg.net/documentation/ (Accessed: 06 May 2018)

Unruly Games (2017) Simple UI. Available at:

https://assetstore.unity.com/packages/2d/gui/icons/simple-ui-103969 (Accessed: 11

September 2018)

https://assetstore.unity.com/packages/3d/characters/humanoids/asobi-chan-free-116360
https://www.bensound.com/royalty-free-music/track/adventure
https://assetstore.unity.com/packages/3d/characters/taichi-character-pack-15667
https://assetstore.unity.com/packages/tools/integration/async-await-support-101056
https://assetstore.unity.com/packages/3d/characters/humanoids/man-in-a-suit-51662
https://assetstore.unity.com/packages/3d/environments/urban/school-scene-66006
https://ummorpg.net/documentation/
https://assetstore.unity.com/packages/2d/gui/icons/simple-ui-103969

