

Digital Studio
Practice
VR Nursing Awareness Simulator

Gordon Johnson
K1451760

K1451760

GORDON JOHNSON 1

1 Digital Studio Practice

Table of Contents
Introduction .. 2

Tools and Technologies ... 3

Implementation .. 4

Conclusion & Future Improvements .. 7

References .. 8

Appendix One – GitHub Commit History ... 10

Appendix Two – Game Controller Main Components .. 23

Appendix Three – Setting and Getting High Scores .. 26

K1451760

GORDON JOHNSON 2

2 Digital Studio Practice

Introduction

Virtual reality is the first step into a fully immersive environment, with the technology

continuing to develop at a tremendous rate. Due to my lack of prior understanding and

knowledge of developing for VR, I was aware that this project would involve a steep learning

curve, however I was confident I could rise to the challenge.

Providing a final product for a client, adds enormous depth and motivation to the project, even

more so when that client is the School of Nursing. Ensuring that the School of Nursing, get a

Virtual Reality solution that matches their vision and potentially helps in the training of future

nurses, is a key element to this project.

Due to the benefits of regular testing while developing a product, after thorough research, I

invested in a Microsoft Mixed Reality Lenovo Explorer HMD Headset. All testing will be

conducted on this headset. As this is still a very new product, some unforeseen challenges may

present themselves.

Repository

GitHub - https://github.com/LordGee/dsp_vrnursing_beta

Early Development Videos

Learning Interaction - https://www.youtube.com/watch?v=SjOezdnbt0o

Mini Game Prototype - https://www.youtube.com/watch?v=kwoFdxxz-lc

UI Interaction - https://www.youtube.com/watch?v=Y_I2lmRb9So

Mini Game Improvements - https://www.youtube.com/watch?v=zLgcvMubpgc

Player Stats & New Environment - https://www.youtube.com/watch?v=hRbl5z5LVec

Final Video

Play through of entire game - https://youtu.be/gwweUO8yN1k

https://github.com/LordGee/dsp_vrnursing_beta
https://www.youtube.com/watch?v=SjOezdnbt0o
https://www.youtube.com/watch?v=kwoFdxxz-lc
https://www.youtube.com/watch?v=Y_I2lmRb9So
https://www.youtube.com/watch?v=zLgcvMubpgc
https://www.youtube.com/watch?v=hRbl5z5LVec
https://youtu.be/gwweUO8yN1k

K1451760

GORDON JOHNSON 3

3 Digital Studio Practice

Tools and Technologies

Unity 3D

After analysing the brief and discussing various options with the rest of the DSP

Team, it was decided that the Unity 3D Game Engine (Unity, 2018), would be the

main development tool we would use. This is the engine that most members with

development experience, are familiar with. As the coding language for this engine is primarily

C#, with minor patching it supports Microsoft Mixed Reality (Microsoft, 2017). The version

of Unity 3D used, was originally 2017.2.0p2. In December, the project was updated to version

2017.3.0f3.

Visual Studio

The IDE used for the coding of this project, was Microsoft Visual Studio 2017.

As the sole programmer, I am most familiar with this IDE, especially around the

debugging and other integrated features that VS provides. There are alternatives

that could be used for the development, such as “Mono Develop” or Jet Brains “Rider” but due

to the complexities of this project, it was felt that using familiar applications would be

beneficial.

Mixed Reality Tool Kit

Although not implemented in the final version of this project, the first iteration

began with using this SDK (Microsoft, 2018). This provided an early opportunity

to start learning the basics of VR development, whilst awaiting the release of

Steam VR for Mixed Reality.

Steam VR

Switching to the Steam VR SDK was important, as it provided multi hardware

compatibility, primarily including the HTC Vive, Open VR and now Microsoft

Mixed Reality. This SDK provides access to many of the primitive VR

functionalities, such as access to camera rigs, tracked controller, model renderers and

interactions.

VRTK

The VRTK plugin was chosen for some of its compatibility features, such as the

ability to implement multiple SDK’s for various devices, such as the Oculus Rift.

Once setup, VRTK will operate using the correct Vendor SDK, for the headset in

use. VRTK also includes a simulator, this allows members of the group without a VR headset,

to test the development of the project.

GitHub

The repository for this project, including a complete history of the development

process (also found in Appendix One), can be found on GitHub. Git, is an

invaluable development tool, showing each iteration of the project, with the ability

to revert to a previous commit if required. It also ensures, that every device / user involved in

the development, can always be working on the latest version of the project.

K1451760

GORDON JOHNSON 4

4 Digital Studio Practice

Implementation

Prior to starting the implementation of the project, I analysed the various UX and Game Design

documentation, produced during these phases. The most valuable document, was the game

flow diagram which provided a summary of events across a timeline, this ensured that events

were implemented in the order and structure of the design.

The code structure, is organised into three types of scripts, the manager, objects and task scripts.

Some of the manager scripts, implement and handle key aspects of the running game, while a

subset of others, handle key information that is not always active.

Major Manager Scripts

Script

Name

Purpose / Operation

Event

Controller

The Event Controller, is a variation of the Unity messaging system (Unity,

2017). Functions are overloaded to allow for two types of events, one that can

accept a float value to be passed through and one that doesn’t. This allows

functions anywhere within the code, to be listened for and triggered, without
the need for finding components. This reduces overheads and improves

performance.

Game

Controller

The Game Controller, is the starting and end for the entire game. It controls

the main game states, as well as variables such as scores, levels and timers.

Where possible, all attributes that require an ‘Update’ function are managed

within this class. The three main game states, are ‘Brief’, ‘Playing’ and ‘Game

Over’ These are checked every frame, with the relevant functions being

executed. This controller, also manages the players statistics, such as the

Hydration, Energy and Fade levels, throughout gameplay. The main

components of this controller, can be seen in Appendix Two.

Spawn

Controller

The Spawn Controller, handles all objects spawn within the game, such as

water, food, hazards and task objects. A set of spawn locations have been

placed around the scene, this controller takes the locations as a potential

position for the next object to be spawned, it also checks whether an object

already occupies this location, ensuring that two objects do not randomly

spawn on top of one another. Once a suitable, empty location has been found,

this controller spawns a relevant object. When an object has been collected,

the controller removes it from the scene and frees up the spawn location.

Task

Controller

The Task Controller, operates alongside the game controller. It instantiates

new tasks into the scene, as and when required and removes the appropriate

task once completed.

K1451760

GORDON JOHNSON 5

5 Digital Studio Practice

Minor Manager Scripts

Script

Name

Purpose / Operation

Canvas

Controller

When needed, the Canvas Controller, updates the player statistics. These can

be provided to the player at any given time. The constructor declares the

canvas as not active, it is only opened when requested via the event controller.

Information in the Canvas, is only updated when the player stats change, so if

the player accumulates a point, an event is triggered telling the Canvas it is

now time to update. This reduces the overhead of trying to update the canvas

stats on every frame.

Constant

Controller

The Constant Controller, provides a home for all the constant variables within

the application, maintaining starting game values, tag and event names. For

the latter two, this is useful as declaring string values can often lead to typo

errors. Ultimately, a lot of time can be saved during development by reducing

the need to remember these names.

Home

Controller

The Home Controller, is primarily responsible for the handling of the high

scores in the start scene. When the scene is loaded, the values are obtained

from the ‘Player Preferences Controller’ and populated into the scene.

Player

Controller

The Player Controller, handles controller interaction events, defining what

happens when a button is pressed, depending on the current state of the game.

For example, if the Controller Menu button is pressed, a function is called that

triggers the Event Controller to action the listening function in the Canvas

Controller script. Originally, this was used for the Pipe Mini Game, however,

calls to these functions have been moved to the object specific scripts.

Player

Prefs

Controller

The Player Preferences Controller, handles the getting and setting of values

on the local machine that the game is played on. These variables, are primarily

used for maintaining player scores. As the Player Preferences Controller, only

handles a small selection of data types, a persistent array of values that could

be stored and retrieved was created, see Appendix Three.

K1451760

GORDON JOHNSON 6

6 Digital Studio Practice

Game Task One Implementation

This task involves colleting three bottle of pills, once all

three bottles are collected, the game ends. The Task 1

script, remains active throughout the entire game,

spawning a new object at certain points during the game,

depending on the player progress within other tasks. The

task object, needed to be interactable, so when the grip

button is pressed it collects the object. Once the first

object is collected, the next task is instantiated.

Game Task Two Implementation

Task two, requires a bed to be instantiated that does not

conform to the presentation of the other beds in the

scene. In this instance, three objects are placed around

the bed. One is in the wrong place and should be placed

in the correct position, the other two are rubbish that

should be placed in the bin. Feedback is presented to the

player, using 3D Text just above the bed, indicating how

much time is left and how many completed objects have

been dealt with.

Game Task Three Implementation

Unlike the other two tasks, task three (Pipe Mini Game)

has many more moving parts to its operation and is

spread across four classes.

The major class here, is the Pipe Manager Class. Which

once created, will generate a grid and populate each

space within it, with a random pipe piece, until the grid

has been completed.

Each piece of pipe has two classes attached. The first, is

the Pipe class, this defines what type of pipe piece it is,

its position within the grid, colour state and whether it is

connected to a positive piece. This class, also handles

the rotation of the pipe pieces. Using a coroutine, it adds

a slight delay to prevent the objects rotating too quickly,

this also makes the mini game more challenging.

The second class, is the Connector class. This handles

the collision detection with other pipe pieces and checks

the colliding objects connectivity states, reporting back

to the Pipe class if successfully connected.

K1451760

GORDON JOHNSON 7

7 Digital Studio Practice

Conclusion & Future Improvements

The team worked well together, there was a clear structure, and everyone had a part to play

within the development of this project. Starting with the research that fed into the User

Experience decisions, this influenced the design, which provided a solid structure for the

implementation. The process passed through a number of iterations, highlighting the value for

being flexible to changes, which we experienced first-hand when the overall game structure

changed quite significantly. Fortunately, the major changes were during the early stages of

implementation.

The investment in the VR Headset, ultimately provided an invaluable asset to the development

of this project, allowing me to address VR related issues as soon as they arose. I could not

imagine trying to develop a VR project without this hardware.

Future Improvements

• Distraction events, to potentially lead the player away from the task at hand.

• Simulated nurse workload with additional tasks, would provide a systematic way to

delegate tasks.

• Animated character to provide the tutorial, currently this is a text canvas which acts as

a placeholder / barrier, until the brief has been given.

• The Spawn Controller, could be improved further, to make this more a plugin, to

easily allow for additional objects to be implemented quickly.

• Additional checks in the Pipe Mini Game, to prevent impossible games. Also, the pipe

rotation would benefit from some animation.

K1451760

GORDON JOHNSON 8

8 Digital Studio Practice

References

Asset References

Visual Assets

Crea3d (2012) different rubbish. Available at: https://www.turbosquid.com/3d-models/free-

different-rubbish-3d-model/655562 (Accessed: 10 January 2018)

ProAssets (2016) Free HDR Sky. Available at:

https://www.assetstore.unity3d.com/en/#!/content/61217 (Accessed: 18 December 2017)

Rokay3D (2017) Old Telephone. Available at:

https://www.assetstore.unity3d.com/en/#!/content/62434 (Accessed: 12 January 2018)

Audio Assets

1pjladd2 (2012) Eating_an_Apple.wav. Available at:

https://freesound.org/people/1pjladd2/sounds/143117/ (Accessed: 14 January 2018)

deleted_user_7146007 (2017) Pills in a Bottle Shaking. Available at:

https://freesound.org/people/deleted_user_7146007/sounds/383873/ (Accessed: 14 January

2018)

f4ngy (2014) Zap.wav. Available at: https://freesound.org/people/f4ngy/sounds/232885/

(Accessed: 14 January 2018)

Gabovitch, I. (2013) Throwing Away Plastic Trashbag. Available at:

https://freesound.org/people/qubodup/sounds/192064/ (Accessed: 14 January 2018)

Gladkiy (2016) Suburban hospital ambience. Available at:

https://freesound.org/people/gladkiy/sounds/348109/ (Accessed: 02 December 2017)

Hypocore (2012) buzzer2.wav. Available at:

https://freesound.org/people/hypocore/sounds/164089/ (Accessed: 02 December 2017)

OtisJames (2014) thud.wav. Available at:

https://freesound.org/people/OtisJames/sounds/215162/ (Accessed: 14 January 2018)

swordofkings128 (2017) Gulping. Available at:

https://freesound.org/people/swordofkings128/sounds/397611/ (Accessed: 14 January 2018)

Werra (2009) telephone.mp3. Available at: https://freesound.org/people/Werra/sounds/78565/

(Accessed: 12 January 2018)

https://www.turbosquid.com/3d-models/free-different-rubbish-3d-model/655562
https://www.turbosquid.com/3d-models/free-different-rubbish-3d-model/655562
https://www.assetstore.unity3d.com/en/#!/content/61217
https://www.assetstore.unity3d.com/en/#!/content/62434
https://freesound.org/people/1pjladd2/sounds/143117/
https://freesound.org/people/deleted_user_7146007/sounds/383873/
https://freesound.org/people/f4ngy/sounds/232885/
https://freesound.org/people/qubodup/sounds/192064/
https://freesound.org/people/gladkiy/sounds/348109/
https://freesound.org/people/hypocore/sounds/164089/
https://freesound.org/people/OtisJames/sounds/215162/
https://freesound.org/people/swordofkings128/sounds/397611/
https://freesound.org/people/Werra/sounds/78565/

K1451760

GORDON JOHNSON 9

9 Digital Studio Practice

Implementation References

Microsoft (2017) Developer readiness status - Immersive headset development. Available at:

https://developer.microsoft.com/en-us/windows/mixed-reality/developer_readiness_status

(Accessed: 12 November 2017)

Microsoft (2017) MixedRealityToolkit-Unity. Available at:

https://github.com/Microsoft/MixedRealityToolkit-Unity (Accessed: 12 November 2017)

Unity3D (2018) Unity User Manual (2017.3). Available at:

https://docs.unity3d.com/Manual/index.html (Accessed: 26 October 2017)

Unity3D (2017) Events: Creating a simple messaging system. Available at:

https://unity3d.com/learn/tutorials/topics/scripting/events-creating-simple-messaging-system

(Accessed: 26 November 2017).

Unity Forums (2015) [Messaging System] Passing parameters with the event. Available at:

https://forum.unity.com/threads/messaging-system-passing-parameters-with-the-

event.331284/ (Accessed: 26 November 2017).

Valve (2017) SteamVR. Available at: https://developer.valvesoftware.com/wiki/SteamVR

(Accessed: 14 November 2017)

VRTK - Virtual Reality Toolkit (2017) VRTK - Virtual Reality Toolkit. Available at:

https://vrtoolkit.readme.io/ (Accessed: 23 December 2017)

https://developer.microsoft.com/en-us/windows/mixed-reality/developer_readiness_status
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://docs.unity3d.com/Manual/index.html
https://unity3d.com/learn/tutorials/topics/scripting/events-creating-simple-messaging-system
https://forum.unity.com/threads/messaging-system-passing-parameters-with-the-event.331284/
https://forum.unity.com/threads/messaging-system-passing-parameters-with-the-event.331284/
https://developer.valvesoftware.com/wiki/SteamVR
https://vrtoolkit.readme.io/

K1451760

GORDON JOHNSON 10

10 Digital Studio Practice

Appendix One – GitHub Commit History

K1451760

GORDON JOHNSON 11

11 Digital Studio Practice

K1451760

GORDON JOHNSON 12

12 Digital Studio Practice

K1451760

GORDON JOHNSON 13

13 Digital Studio Practice

K1451760

GORDON JOHNSON 14

14 Digital Studio Practice

K1451760

GORDON JOHNSON 15

15 Digital Studio Practice

K1451760

GORDON JOHNSON 16

16 Digital Studio Practice

K1451760

GORDON JOHNSON 17

17 Digital Studio Practice

K1451760

GORDON JOHNSON 18

18 Digital Studio Practice

K1451760

GORDON JOHNSON 19

19 Digital Studio Practice

K1451760

GORDON JOHNSON 20

20 Digital Studio Practice

K1451760

GORDON JOHNSON 21

21 Digital Studio Practice

K1451760

GORDON JOHNSON 22

22 Digital Studio Practice

K1451760

GORDON JOHNSON 23

23 Digital Studio Practice

Appendix Two – Game Controller Main Components

private void Start()
 {
 currentGameState = ConstantController.GAME_STATE.Brief;
 hydrationTimer = hungerTimer = 0f;

 CanvasController.gameHydration = hydrationLevel =
 ConstantController.HYDRATION_MAX;

 CanvasController.gameEnergy = hungerLevel = ConstantController.HUNGER_MAX;
 EventController.TriggerEvent(ConstantController.EV_SPAWN_FOOD);
 EventController.TriggerEvent(ConstantController.EV_SPAWN_WATER);
 EventController.TriggerEvent(ConstantController.EV_SPAWN_HAZARD);
 gameScore = 0f;
 winCondition = true;
 gameTimer = timerInterval = ConstantController.GAME_TIME;
 UpdateGameScore(gameScore);
 UpdateGameTimer();
 VRTK_BasicTeleport.BlinkColourColor = Color.clear;
 }

private void Update()
 {
 gameTimer -= Time.deltaTime;
 if (Mathf.Floor(timerInterval) - Mathf.Floor(gameTimer) >= 1f) {
 timerInterval = gameTimer;
 UpdateGameTimer();
 }
 switch (currentGameState) {
 case ConstantController.GAME_STATE.Brief:
 UpdateBrief();
 break;
 case ConstantController.GAME_STATE.Playing:
 UpdatePlaying();
 break;
 case ConstantController.GAME_STATE.GameOver:
 UpdateGameOver();
 break;
 default:
 Debug.LogError("No active game state!");
 break;
 }
 }

K1451760

GORDON JOHNSON 24

24 Digital Studio Practice

private void UpdatePlaying()
 {
 if (Time.timeSinceLevelLoad < ConstantController.GAME_TIME) {
 if (hydrationLevel > 0) {
 hydrationTimer += Time.deltaTime;
 if (hydrationTimer > ConstantController.HYDRATION_DECREASE_TIME) {
 hydrationLevel -= 1f;
 AdjustFadeColor();
 CanvasController.gameHydration = hydrationLevel;
 hydrationTimer = 0f;
 }
 } else {
 winCondition = false;
 GetComponent<AudioSource>().clip = endGameStates[0];
 GetComponent<AudioSource>().Play();
 currentGameState = ConstantController.GAME_STATE.GameOver;
 }
 if (hungerLevel > 0) {
 hungerTimer += Time.deltaTime;
 if (hungerTimer > ConstantController.HUNGER_DECREASE_TIME) {
 hungerLevel -= 1f;
 AdjustFadeColor();
 CanvasController.gameEnergy = hungerLevel;
 hungerTimer = 0f;
 }
 } else {
 winCondition = false;
 GetComponent<AudioSource>().clip = endGameStates[1];
 GetComponent<AudioSource>().Play();
 currentGameState = ConstantController.GAME_STATE.GameOver;
 }
 } else {
 winCondition = false;
 currentGameState = ConstantController.GAME_STATE.GameOver;
 }
 }

public void SpawnHazard()
 {
 StartCoroutine(DelayNewSpawn(ConstantController.EV_SPAWN_HAZARD, 45f));
 }

private IEnumerator DelayNewSpawn(string _spawn, float _delay)
 {
 yield return new WaitForSeconds(_delay);
 EventController.TriggerEvent(_spawn);
 }

K1451760

GORDON JOHNSON 25

25 Digital Studio Practice

private void AdjustFadeColor()
 {
 float increment = maxAlpha / (ConstantController.HUNGER_MAX +
 ConstantController.HYDRATION_MAX);
 alpha = 0f;
 alpha += (ConstantController.HUNGER_MAX - hungerLevel) * increment;
 alpha += (ConstantController.HYDRATION_MAX - hydrationLevel) * increment;
 if (alpha > maxAlpha) {
 alpha = maxAlpha;
 }
 VRTK_BasicTeleport.BlinkColourColor = new Color(0.2f, 0f, 0F, alpha);
 VRTK_SDK_Bridge.HeadsetFade(VRTK_BasicTeleport.BlinkColourColor, 0.1f);
 }

public void UpdateGameScore(float _score)
 {
 gameScore += Mathf.Ceil(_score);
 CanvasController.gameScore = gameScore;
 }

public void UpdateGameTimer()
 {
 CanvasController.gameTimer = gameTimer;
 EventController.TriggerEvent(ConstantController.EV_UPDATE_STATUS_CANVAS);
 }

public float GetGameTimer()
 {
 return gameTimer;
 }

private void UpdateGameOver()
 {
 if (!once) {
 if (winCondition) {
 GetComponent<AudioSource>().clip = endGameStates[2];
 GetComponent<AudioSource>().Play();
 gameScore += Mathf.Ceil(gameTimer);
 }
 once = !once;
 if (GetComponent<AudioSource>().isPlaying)
 finishTimer = GetComponent<AudioSource>().clip.length;
 else
 finishTimer = 1f;
 StartCoroutine(LoadMainMenu(finishTimer));
 }
 }

 private IEnumerator LoadMainMenu(float _length)
 {
 yield return new WaitForSeconds(_length);
 FindObjectOfType<PlayerPrefsController>().SetPlayerScore(gameScore);
 SceneManager.LoadScene(LEVEL_00);
 }

K1451760

GORDON JOHNSON 26

26 Digital Studio Practice

Appendix Three – Setting and Getting High Scores

Player Preferences Controller
public void SetPlayerScore(float _value)
 {
 PlayerPrefs.SetFloat(CURRENT_SCORE, _value);
 AddNewScoreToHighScore(_value);
 }

private void AddNewScoreToHighScore(float _testScore)
 {
 bool isAvailableSpace = false;
 for (int i = 0; i < NO_OF_SCORES; i++) {
 if (!PlayerPrefs.HasKey(HIGH_SCORE_ARRAY + (i + 1))) {
 isAvailableSpace = true;
 PlayerPrefs.SetFloat(HIGH_SCORE_ARRAY + (i + 1), _testScore);
 break;
 }
 }
 if (!isAvailableSpace) {
 int lowestIndex = -1;
 float lowestScore = 0;
 for (int i = 0; i < NO_OF_SCORES; i++) {
 float thisTest = PlayerPrefs.GetFloat(HIGH_SCORE_ARRAY + (i + 1));
 if (thisTest < _testScore) {
 if (thisTest < lowestScore || lowestScore == 0f) {
 lowestScore = thisTest;
 lowestIndex = (i + 1);
 }
 }
 }
 if (lowestIndex != -1) {
 PlayerPrefs.SetFloat(HIGH_SCORE_ARRAY + lowestIndex, _testScore);
 }
 }
 }

public List<float> GetHighScores()
 {
 List<float> scores = new List<float>();
 for (int i = 0; i < NO_OF_SCORES; i++) {
 if (PlayerPrefs.HasKey(HIGH_SCORE_ARRAY + (i + 1))) {
 scores.Add(PlayerPrefs.GetFloat(HIGH_SCORE_ARRAY + (i + 1)));
 }
 }
 scores.Sort();
 scores.Reverse();
 return scores;
 }

K1451760

GORDON JOHNSON 27

27 Digital Studio Practice

Home Controller
private void DisplayHighScores()
 {
 GameObject text = GameObject.Find("HighScoresText");

List<float> scores = FindObjectOfType<PlayerPrefsController>().GetHighScores();
 for (int i = 0; i < scores.Count; i++) {
 text.GetComponent<TextMesh>().text += "\n" + (i + 1) + ". " + scores[i];
 }
 }

