

3D Games
Programming
Advanced Game Development with

Advanced Artificial Intelligence.

Box Link:

https://kingston.box.com/s/iqc3153n

0t0zhpi8pl7a7n2g97kfzuy5

Gordon Johnson
K1451760

K1451760

GORDON JOHNSON 1

1 3D Games Programming

Table of Contents
Overview / Links.. 2

Introduction .. 3

Plot ... 3

Tasks to be Implemented ... 4

Instructions ... 5

Interfaces .. 5

Controls .. 7

Techniques and Algorithms ... 8

Neural Network .. 8

Genetic Algorithm .. 9

Implemented Source Code ... 11

Neural Network Class .. 11

NNLayer Class ... 13

Genetic Algorithm Class .. 14

Class Diagram of the AI Classes .. 18

Performance and Optimization Techniques ... 19

Future Improvements and Known Issues ... 20

AI Improvements.. 20

Game Improvements .. 20

Known issues.. 20

BONUS CONTENT .. 21

References .. 22

Implementation References .. 22

Asset References .. 22

Appendix One - GitHub Commits ... 23

K1451760

GORDON JOHNSON 2

2 3D Games Programming

Overview / Links

Teach the machine to play, then play against your creation.

Name: Project Human v Machine

Type: Racing Simulation

Theme: Non-realistic, Racing.

Audience: 3+, Aimed at all age groups

Technology: Unity3D 2017.2

The Box Link: https://kingston.box.com/s/iqc3153n0t0zhpi8pl7a7n2g97kfzuy5

GitHub: https://github.com/LordGee/MachineLearningRaceSim

PC Version: http://mychaos.co.uk/game/project_hvm/project_hvm.zip

Video: https://youtu.be/W9QjRx2t2gM

Figure 1 - Screenshot of actual gameplay

https://kingston.box.com/s/iqc3153n0t0zhpi8pl7a7n2g97kfzuy5
https://github.com/LordGee/MachineLearningRaceSim
http://mychaos.co.uk/game/project_hvm/project_hvm.zip
https://youtu.be/W9QjRx2t2gM

K1451760

GORDON JOHNSON 3

3 3D Games Programming

Introduction

The purpose of this game will be to provide a working/practical demonstration, of how

Machine Learning can be used to provide an Advance Artificial Intelligence, within an actual

game. To develop the Artificial Intelligence, a Neural Network hybrid with a Genetic

Algorithm, will be used to train the AI Agent. These agents, depending on performance, can

then be used to populate the decision-making process of the AI, that operates on the Neural

Network. Once the AI has been trained, the user will have the ability to race against the AI and

see who can get the fastest lap time.

Plot

Can you beat the Artificial Intelligence? Allow the machine to train on the tracks, the more

time it spends training the better the AI will get and so the more advanced the competition.

Offering various game modes, you can choose to train your own Artificial Intelligence in

Machine Learning mode, play single player in Human Learning mode, or battle against the

previously created AI in Battle mode. See if you can get beat the AI and get the fastest lap

time!

K1451760

GORDON JOHNSON 4

4 3D Games Programming

Tasks to be Implemented

The tasks to be implemented in this project, have been separated based on the MoSCoW

method. This will form a working document and is likely to change throughout the

development process.

Must Have:

• Construct one race track.

• Implement one race car, with control mechanics that can be utilised by the human

player (Single Player Mode).

• Implement a Neural Network and Genetic Algorithm, to allow Machine Learning.

• Implement appropriate input values, such as ray-casts, to be added into the Neural

Network.

• Convert output values, to actual control methods, to enable movement.

• Be able to save and retrieve, trained AI agents.

Should Have:

• Add a verses mode, to allow a human player to battle against the Machine taught AI.

• Event triggers, to improve performance, instead of relying on updates.

• Construct a second race track.

• Create GUI canvas, to provide information feedback to the user, regarding training.

• Create an Options Menu, user interface.

Could Have:

• Audio, Sound Effects and Background Music.

• Construct a third race track.

• Create a GUI interface, to provide lap timer information to the human player.

Won’t Have:

• Particle effects.

• Animation.

K1451760

GORDON JOHNSON 5

5 3D Games Programming

Instructions

Interfaces

When starting ‘Project HvM’, the user will be presented with an Option Menu screen. The user

can choose from three tracks. Once a track has been selected, the game modes and information

will update for that specific track. For example, if the track selected does not have a trained AI

Agent, then the Battle Game Mode will disappear. The information below the game modes,

will also update displaying the AI Agents current best fitness and the human players best lap

time, for the selected track.

Once the desired track has been determined, selecting a game mode will launch the appropriate

game mode and settings.

Figure 2 - Main Menu

K1451760

GORDON JOHNSON 6

6 3D Games Programming

For Machine Learning Mode, a specific graphical user interface, is presented to provide the

user feedback on current information and performance statistics with regards to the learning

process. This information includes the generation, the Machine Learning process is currently

on. Once each genome within the current generation is completed, the test results are displayed

in the User Interface. While the car is in motion, the fitness level will increase, this is

represented in the Current Fitness indicator. The best fitness is the Machines best ever fitness

level, this will include previously trained agents.

For any game mode the human participates in, a graphical user interface displays the

appropriate information. This includes the human and machine players best lap times, as well

as the current lap timer. The human player car, will always be the blue car.

Figure 3 - Machine Learning Interface

Figure 4 - Player Participation Interface

K1451760

GORDON JOHNSON 7

7 3D Games Programming

Controls
This game focuses solely on the keyboard method, for the player to operate this game.

However, a gamepad controller should also be available for play.

Keyboard Controls

Figure 5 – Player Keyboard Controls

Figure 6 - Machine Learning Keyboard Controls

In addition to the above keyboard layouts, the Escape key, will return the user from the game

to the Menu screen. If pressed while in the Menu screen, the application would quit.

K1451760

GORDON JOHNSON 8

8 3D Games Programming

Techniques and Algorithms

Neural Network
An Artificial Neural Network (NN) was implemented into this project, for the purpose of

allowing the AI Agent to make decisions based on its available data. A NN, consists of several

layers, with each layer consisting of many

neurons. The first layer, is the input layer.

This consists of all the values that are

passed through from the sensors, which

helps build a picture of the AI Agents

surroundings. As seen in figure 7, the car

has seven ray-cast inputs, each one

populates a neuron within the input layer of

the NN, relaying the distance value between

the car and the wall barrier. The eightieth

input, relays the cars current speed.

The next layer is the hidden layer. This can consist of many layers, there can be many neurons

per layer. For this project, the hidden layer has one layer which consists of eight neurons.

The final layer is the output layer. This provides the final values, which then get feed into the

controls to drive the car. This layer has four neurons, one for each of the desired outputs. The

first two neurons contribute to the steering (horizontal).

However, as the project progressed it was apparent that

these two neurons could be consolidated into one. The

third output neuron, provides the acceleration or reverse

value. The final neuron, controls the brake function of

the car. This is converted into a Boolean value, at a high

threshold, to prevent constant braking.

This type of NN is a feed forward architecture. This

means the value will always move in the same direction.

Starting at the input, then the hidden layer and finally

arriving at the output layer, there is no loop back.

Each connection between two neurons, has a unique

weight attached to it. Each incoming connection value, is

then evaluated against this unique weight. Each input

value, is then multiplied by the weight for that

connection. This calculation is accumulated for each connection coming into this neuron, after

which an additional weight is accumulated that is multiplied by a bias value, in this example it

is (-1). The net value of this, forms the basis of the activation function, this uses the Sigmoid

or S-Shaped function to produce a final output value for this neuron, this can then be used in

the next layer, if there is one. Alternatives to the Sigmoid function, for this type of project are

the step and hyperbolic tangent functions. This process only happens on the Hidden and Output

layers. As previously discussed, the input layer receives its initial values from the sensors

provided within the game.

Figure 7 - Ray-cast inputs

Figure 8 - Neural Network Layout

K1451760

GORDON JOHNSON 9

9 3D Games Programming

To know what weights, should be held in the connection between all these neurons, we need

to train this NN to develop appropriate values based on performance. A common method for

training a NN is Back-Propagation, learning is achieved by receiving feedback on errors.

Although at the early stage of this project, I could not visualise what an error may look like in

order to be able to provide that feedback. Due to this, I opted to implement a Genetic Algorithm

which trains the NN based on performance and merit, with the best selection of information

being passed onto the next generation.

Genetic Algorithm
The Genetic Algorithm (GA), is a process that evolves other time. Each attempt is translated

into a fitness value, with the best fitness Genomes being used to generate the next generation.

At the beginning, the GA will create a defined population or generation of Genomes. For this

project, the number Genomes was set to 20. This value should typically be an even, allowing

for cross breeding later. Each Genome, is created by generating a set of random weights,

ranging between -1.0 and +1.0, this process is repeated for all the possible connections in the

NN. This is formulated by: Input Neurons * Hidden Neurons * Output Neurons + Hidden

Neurons + Output Neurons.

For this project: 8 * 8 * 4 + 8 + 4 = 268 weights per Genome or generation.

Once this first generation has been instantiated, each Genome is applied to the NN for testing.

While the Genome is being tested, its current fitness level is recorded, based on speed of the

car. The further the Genome travels, the higher the fitness level and so, the better the

performance. Once testing has exhausted all Genomes, then a breeding process takes place, to

develop the next generation of Genomes.

The breeding process, selects the best cases from the previous generation, in this example that

is the best four Genomes. Each of these four Genome weights, are copied into the next

population, where each is passed through a mutation process that has an 8% chance of mutating

a given weight (more on mutation later). As an extra condition, I added the ability to store and

reproduce the best performing genome into the next generation, un-mutated. This was an

attempt to prevent the downgrading of abilities from one generation to the next.

K1451760

GORDON JOHNSON 10

10 3D Games Programming

After these Genomes have been added, a cross breeding process begins. Taking two of the best

Genomes at a time and generating two child Genomes out of these. The first is taken, with a

random amount of weight taken and used for the start of one of the child’s weights, the

remainder is then made up of the second Genome. This child, then goes through the mutation

process, which provides the chance for these be altered again. Alternatively, there are other

methods that can be explored here in later projects, such as taking every other one in a crisscross

fashion, or assigning each weight from a completely random Genome.

Example of cross breeding:

Genome 1 Genome 2 Child 1

0.8 -0.2 0.8

0.6 -1 0.6

-0.5 0.3 -0.5

-0.2 0.8 -0.2

0.0 0.6 0.6

-0.9 -0.6 -0.6

1.0 -0.7 -0.7

Finally, if the Genomes that have been generated, do not meet the maximum population,

completely brand-new Genomes with random weight are generated and added until the list

holds the right population value.

The new generation, is then put to the test and the process continues.

The Mutation process, provides an 8% chance that each weight could potentially change.

there are four different methods that could affect weight change. For example, one of these

changes could mean the weight value goes from a positive number to a negative, or another

could be that a completely new value is randomly generated. Based on the amount of weights

held in this configuration, about 21 different weights could be mutated on average.

K1451760

GORDON JOHNSON 11

11 3D Games Programming

Implemented Source Code

Before implementation, I referred to many sources of information. Including various books

(Bourg and Seemann, 2004), (Buckland, 2005), (Mueller and Massaron, 2016), (Schwab,

2009). As well as some online resources, that provided a coding structure in C++ (Robbins,

2014), which helped organise my classes and provided a pseudocode structure for the functions.

Neural Network Class
The neural network class, is the centre of the artificial intelligence. There are two main

functions within the class, that contribute to this workload; the Update NN and the Populate

Neurons from Genome functions.

Update NN Function
/// <summary>
 /// This function handles the updating of the Neural Network.
 /// 1. Creates an empty list for the outputs for each layer
 /// 2. Starts by iterating through the hidden layer(s) then
 /// the output layer
 /// 3. If its the first iteration that the inputs are
 /// provided by the input manager e.g. from the sensors.
 /// 4. For all other iteration the outputs from the previous layer
 /// become the inputs.
 /// </summary>
 public void UpdateNN() {
 outputs = new List<float>();
 for (int i = 0; i < hiddenLayers.Count; i++) {
 if (i > 0) {
 inputs = outputs;
 }
 hiddenLayers[i].Evaluate(inputs, ref outputs);
 }
 inputs = outputs;
 outputLayer.Evaluate(inputs, ref outputs);
 }

While the Update NN Function, is a simple function, it’s purpose is to call an evaluation of the

hidden and output layers on every frame.

K1451760

GORDON JOHNSON 12

12 3D Games Programming

Populate Neurons from Genome Function
 /// <summary>
 /// This class populates each neuron form the weight provided from the Genome.
 /// Generating a new Neural Network, this provides the infrastructure for the
 /// decision making process.
 /// </summary>
 /// <param name="_genome">Current genome to be executed</param>
 /// <param name="_input">Total number of inputs</param>
 /// <param name="_neuronsPerHidden">Total number of neurons per hidden
layer</param>
 /// <param name="_output">Total number of outputs</param>
 public void PopulateNeuronsFromGenome(ref Genome _genome, int _input, int
_neuronsPerHidden, int _output) {
 ReleaseNN();
 outputAmount = _output;
 inputAmount = _input;
 NNLayer hidden = new NNLayer();
 List<Neuron> hiddenNeurons = new List<Neuron>();
 hiddenNeurons.Capacity = _neuronsPerHidden;
 for (int i = 0; i < _neuronsPerHidden; i++) {
 List<float> weights = new List<float>();
 weights.Capacity = _input + 1;
 for (int j = 0; j < _input + 1; j++) {
 weights.Add(_genome.weights[i * _neuronsPerHidden + j]);
 }
 hiddenNeurons.Add(null);
 hiddenNeurons[i] = new Neuron();
 hiddenNeurons[i].weights = weights;
 hiddenNeurons[i].numberOfInputs = _input;
 }
 hidden.LoadLayer(hiddenNeurons);
 hiddenLayers.Add(hidden);
 List<Neuron> outputNeurons = new List<Neuron>();
 outputNeurons.Capacity = _output;
 for (int i = 0; i < _output; i++) {
 List<float> weights = new List<float>();
 weights.Capacity = _neuronsPerHidden + 1;
 for (int j = 0; j < _neuronsPerHidden + 1; j++) {
 weights.Add(_genome.weights[i * _neuronsPerHidden + j]);
 }
 outputNeurons.Add(null);
 outputNeurons[i] = new Neuron();
 outputNeurons[i].weights = weights;
 outputNeurons[i].numberOfInputs = _input;
 }
 outputLayer = new NNLayer();
 outputLayer.LoadLayer(outputNeurons);
 }

The Populate Neurons from Genome function, populates the hidden and output layers neuron

connections, with the weights supplied from the next active Genome. This prepares the NN,

for the upcoming test attempt.

K1451760

GORDON JOHNSON 13

13 3D Games Programming

NNLayer Class
The NNLayer class is the basis of each layer. The important function here is the Evaluation

function, which executes the Activation process for Neurons within the given layer.

Evaluate Function
 /// <summary>
 /// This function evaluates the inputs of the previous layer, by iterating through
each neuron
 /// performing a calculation that will be a primer for the output value which is
accumulated by
 /// (input value * each weight of a neuron). An additional value is also added is
an additional
 /// neuron weight that is multiplied by the bias which is -1.0f. this is then
added to the list
 /// of outputs after performing a Sigmoid calculation.
 /// </summary>
 /// <param name="_input">List of input values (output from previous layer if not
the first)</param>
 /// <param name="_output">Output list result after evaluating the results</param>
 public void Evaluate(List<float> _input, ref List<float> _output) {
 int inputIndex = 0;
 for (int i = 0; i < totalNeurons; i++) {
 float activation = 0.0f;
 for (int j = 0; j < neurons[i].numberOfInputs - 1; j++) {
 activation += _input[inputIndex] * neurons[i].weights[j];
 inputIndex++;
 }
 activation += neurons[i].weights[neurons[i].numberOfInputs] *
ConstantManager.BIAS;
 _output.Add(Sigmoid(activation, 1.0f));
 inputIndex = 0;
 }
 }

This function was explained in the previous section of this report, regarding layer evaluation,

evaluation, activation function and the Sigmoid function, (see page 8).

K1451760

GORDON JOHNSON 14

14 3D Games Programming

Genetic Algorithm Class
The genetic algorithm, manages the creation of new Genomes and the breeding process for

new generations.

Create New Genome Function
 /// <summary>
 /// Generates a new genome and populates starting weight float values
 /// between -1.0 and +1.0. Typically, only used at the start
 /// </summary>
 /// <param name="_totalWeights">Total weights required for this
configuration</param>
 /// <returns></returns>
 private Genome CreateNewGenome(int _totalWeights) {
 Genome genome = new Genome();
 genome.ID = genomeID;
 genome.fitness = 0.0f;
 genome.weights.Capacity = _totalWeights;
 for (int i = 0; i < _totalWeights; i++) {
 genome.weights.Add(Random.Range(-1.0f, 1.0f));
 }
 genomeID++;
 return genome;
 }

Generates a brand-new Genome with its own unique weights, to the total amount required for

the set configuration.

Generate New Population Function
/// <summary>
 /// Populates a brand-new population of genomes up to the
 /// maximum population total.
 /// </summary>
 /// <param name="_newTotalPopulation">Maximum population for all
generations</param>
 /// <param name="_totalWeights">Total weights required for this
configuration</param>
 public void GenerateNewPopulation(int _newTotalPopulation, int _totalWeights) {
 generation = 1;
 ClearPopulation();
 currentGenome = 0;
 totalPopulation = _newTotalPopulation;
 population.Capacity = _newTotalPopulation;
 for (int i = 0; i < population.Capacity; i++) {
 Genome genome = CreateNewGenome(_totalWeights);
 population.Add(genome);
 }
 EventManager.TriggerEvent(ConstantManager.UI_GENERATION, generation);
 }

Depending on the set maximum population, this function generates the desired number of

Genomes for the first generation.

K1451760

GORDON JOHNSON 15

15 3D Games Programming

Breed Population Function
/// <summary>
 /// This function is called when the previous generation has completed
 /// all tests. The four best genomes from the previous generation are identified
 /// The four best are then added to the next generation after the mutation process
 /// has been complete. It then adds the overall best performing genome which does
 /// not receive mutation. After this a cross breeding process takes place, each
 /// child that is returned is then also mutated. Lastly if there are any remaining
 /// spaces to reach maximum population then brand new random genomes are generated
 /// and added to the next population.
 /// </summary>
 public void BreedPopulation()
 {
 List<Genome> bestGenomes = new List<Genome>();
 GetBestCases(ConstantManager.NUMBER_OF_GENOMES_TO_BREED, ref bestGenomes);
 List<Genome> children = new List<Genome>();
 Genome topGenome = new Genome();
 for (int i = 0; i < bestGenomes.Count; i++) {
 SetUpTopGenome(ref topGenome, bestGenomes[i]);
 Mutate(topGenome);
 children.Add(topGenome);
 }
 SetUpTopGenome(ref topGenome, bestEverGenome);
 children.Add(topGenome);
 Genome child1 = null;
 Genome child2 = null;
 int crossBreedIteration = Mathf.Abs((ConstantManager.MAXIMUM_GENOME_POPULATION
- children.Count) / (bestGenomes.Count + 2));
 for (int i = 0; i < crossBreedIteration; i++) {
 for (int j = 1; j < bestGenomes.Count; j++) {
 CrossBreed(bestGenomes[i], bestGenomes[j], ref child1, ref child2);
 Mutate(child1);
 children.Add(child1);
 Mutate(child2);
 children.Add(child2);
 }
 }
 int remainingChildren = totalPopulation - children.Count;
 for (int i = 0; i < remainingChildren; i++) {
 children.Add(CreateNewGenome(bestGenomes[0].weights.Count));
 }
 ClearPopulation();
 population = children;
 currentGenome = 0;
 generation++;
 EventManager.TriggerEvent(ConstantManager.UI_GENERATION, generation);
 }

This function, is described in the previous section of this report, (see page 9).

K1451760

GORDON JOHNSON 16

16 3D Games Programming

Cross Breed Function
/// <summary>
 /// This function takes in two existing Genomes and takes the weights and
 /// splits them at a random section and populates the remaining weights with
 /// the second genome to ensure the Capacity remains unchanged, this produces
 /// two babies which have a mixer of the two-original genome.
 /// </summary>
 /// <param name="_g1">Original genome one</param>
 /// <param name="_g2">Original genome two</param>
 /// <param name="_baby1">Returned baby one</param>
 /// <param name="_baby2">Returned baby two</param>
 private void CrossBreed(Genome _g1, Genome _g2, ref Genome _baby1, ref Genome
_baby2) {
 int totalWeights = _g1.weights.Capacity;
 int crossOver = Random.Range(0, totalWeights);
 _baby1 = new Genome();
 _baby1.ID = genomeID;
 _baby1.weights.Capacity = totalWeights;
 genomeID++;
 _baby2 = new Genome();
 _baby2.ID = genomeID;
 _baby2.weights.Capacity = totalWeights;
 genomeID++;
 for (int i = 0; i < crossOver; i++) {
 _baby1.weights.Add(_g1.weights[i]);
 _baby2.weights.Add(_g2.weights[i]);
 }
 for (int i = crossOver; i < totalWeights; i++) {
 _baby1.weights.Add(_g2.weights[i]);
 _baby2.weights.Add(_g1.weights[i]);
 }
 }

This function is described in the previous section of this report, (see page 10).

K1451760

GORDON JOHNSON 17

17 3D Games Programming

Mutate Function
/// <summary>
 /// The class provides an 8% mutation rate for a genome that is
 /// passed into it. Depending on the random hit, provides different
 /// effects on the current weight value.
 /// </summary>
 /// <param name="_genome">Genome that requires to be mutated</param>
 private void Mutate(Genome _genome) {
 for (int i = 0; i < _genome.weights.Count; i++) {
 float mutationLottery = Random.Range(0f, 100f);
 if (mutationLottery <= 2f) {
 _genome.weights[i] *= -1;
 } else if (mutationLottery <= 4f) {
 _genome.weights[i] = Random.Range(-0.5f, 0.5f);
 } else if (mutationLottery <= 6f) {
 _genome.weights[i] *= Random.Range(1.0f, 2.0f);
 } else if (mutationLottery <= 8f) {
 _genome.weights[i] *= Random.Range(0.0f, 1.0f);
 }
 }
 }

This function is described in the previous section of this report, (see page 10).

K1451760

GORDON JOHNSON 18

18 3D Games Programming

Class Diagram of the AI Classes

K1451760

GORDON JOHNSON 19

19 3D Games Programming

Performance and Optimization Techniques

When considering performance and optimisation techniques, I considered some of the advice

given by our recent guest industry speaker, Haris Kapagioridis. One of the main points that

came across to improve performance, is to minimise the amount of Destroying and Instantiating

methods, used within the game.

Initially when first implementing this project, the player car was Instantiated at the beginning

of the scene. On colliding with a barrier, it was then destroyed and re-instantiated at the Spawn

position. This is no longer the case, now the car resets its position and statistics back to its

starting values, meaning that there is no need to Instantiate this object again, until another track

or game mode is started.

Another notable point, was to use an Event system to effect changes in other classes, without

having to check whether an update is needed on every frame. I implemented this half way

through the project when developing the User Interface (UI). This become increasing useful

for displaying a Genome performance to the UI. This only needed to be updated as and when

the Genome had finished its test. Upon completion of the Genomes task, I was able to trigger

an event that would signal to the UI class, to update the display with the latest information.

However, this still required the UI class to back track through the classes, in order to retrieve

the information to perform the update. To improve this, I did a bit of investigation into allowing

values such as a float to be passed through when triggering an event. This allowed the event to

trigger the correct function and relay the current information needed to be populated, in one

line of code.

Using the official (Unity3D, 2017) tutorial for creating a simple messaging system and

referring to a forum post (Unity Forums, 2015) for passing through a variable, I was able to

create an event manager with overloading, to allow floats to be passed or no variable to be

passed. This obviously can be modified for all data types and combinations, depending on the

requirements of the application. In hindsight it would have been extremely useful to have

developed this system earlier in the project, as I can see how this could have benefited and even

improved the performance of the AI classes.

Another improvement that was made, was the introduction of a constant manager. While this

does not improve the performance of the application, it improves workflow, saving time where

string names need to be exact from one class to the next, as well as providing a central location

for constant values, that are reused throughout the application.

K1451760

GORDON JOHNSON 20

20 3D Games Programming

Future Improvements and Known Issues

AI Improvements

• Make improvements to the breeding process in the genetic algorithm class, to further

reduce the risk of degrading performance.

• Improve the cross-breeding process, by exploring alternatives to splitting the weights

ratio, rather than using the start and end of a Genome.

• Add the ability to store and reload a complete generation of Genomes, so training can

continue from where it left off. Currently training will always start with random values.

• Improve the fitness reward, to incorporate the time in which the lap was completed.

This would provide an additional incentive, for the AI to progress the track faster, rather

than slower.

• Implement event system into the AI classes.

Game Improvements

• Implement animation and effects to improve the game cosmetics.

• Build track pieces in a proper 3D modelling tool. The current method of track pieces

made with a Bezier Spline, has affected performance.

• Improve the directional lighting, to effectively light up the track.

• Add another game mode, to include multiple AI agents at the same time.

• Allow the choosing of a specific Genome in which to race, currently only the best

performing Genome is selected to be loaded back in, although others are stored.

Known issues

• (Build only version) AI Agent, when learning will sometimes hang with no movement

whilst still generating an excessive fitness level.

• Track Two supplied AI, does not always complete the lap (50% of the time).

K1451760

GORDON JOHNSON 21

21 3D Games Programming

BONUS CONTENT

At the end of the implementation, I purposely left ‘Track Three’ untrained, to demonstrate how

the User Interface will differ when an Agent for a Track has not been trained yet. However, if

you would rather not train a new agent, the game does include a trained agent file to race this

track, simply add the following two lines to the Assets/Data/List.csv.

3

1128.085

Once saved, the Human vs Machine button will become available. Allowing you to race against

the Machine in Track Three, without further training.

K1451760

GORDON JOHNSON 22

22 3D Games Programming

References

Implementation References
Bourg, D. and Seemann, G. (2004) AI for Game Developers. United States: O’Reilly.

Buckland, M. (2005) Programming Game AI by Example. Texas: Wordware Publishing.

Catlike Coding (2017) Curves and Splines, making your own path. Available at:

http://catlikecoding.com/unity/tutorials/curves-and-splines/ (Accessed: 12 November 2017).

Mueller, J. and Massaron, L. (2016) Machine Learning for Dummies. New Jersey: John

Wiley & Sons.

Robbins, M. (2010) Neural Network Demo. Available at:

https://www.youtube.com/watch?v=0Str0Rdkxxo (Accessed: 10 November 2017).

Robbins, M. (2014) Neural-Network. Available at: https://github.com/matthewrdev/Neural-

Network (Accessed: 10 November 2017).

Schwab, B. (2009) AI Game Engine Programming. Boston: Course Technology.

Unity3D (2017) Events: Creating a simple messaging system. Available at:

https://unity3d.com/learn/tutorials/topics/scripting/events-creating-simple-messaging-system

(Accessed: 26 November 2017).

Unity3D (2017) Layers. Available at: https://docs.unity3d.com/Manual/Layers.html Available

at: https://docs.unity3d.com/Manual/Layers.html (Accessed 19 November 2017).

Unity Forums (2015) [Messaging System] Passing parameters with the event. Available at:

https://forum.unity.com/threads/messaging-system-passing-parameters-with-the-

event.331284/ (Accessed: 26 November 2017).

Asset References
Debsound (2015) Rally Car Idle Loop 17.wav. Available at:

https://freesound.org/people/debsound/sounds/278186/ (Accessed: 06 December 2017)

Hedgehog Team (2012) Skybox Volume 2 (Nebula). Available at: http://u3d.as/2We

(Accessed: 15 November 2017).

Reitanna (2016) big thud2.wav. Available at:

https://freesound.org/people/Reitanna/sounds/332668/ (Accessed: 07 December 2017)

Romariogrande (2016) Space Chase. Available at:

https://freesound.org/people/Romariogrande/sounds/370801/ (Accessed: 06 December 2017)

UltimateArcade (2014) Toon Race Car - Low Poly. Available at: http://u3d.as/84T

(Accessed: 12 November 2017)

http://catlikecoding.com/unity/tutorials/curves-and-splines/
https://www.youtube.com/watch?v=0Str0Rdkxxo
https://github.com/matthewrdev/Neural-Network
https://github.com/matthewrdev/Neural-Network
https://unity3d.com/learn/tutorials/topics/scripting/events-creating-simple-messaging-system
https://docs.unity3d.com/Manual/Layers.html
https://docs.unity3d.com/Manual/Layers.html
https://forum.unity.com/threads/messaging-system-passing-parameters-with-the-event.331284/
https://forum.unity.com/threads/messaging-system-passing-parameters-with-the-event.331284/
https://freesound.org/people/debsound/sounds/278186/
http://u3d.as/2We
https://freesound.org/people/Reitanna/sounds/332668/
https://freesound.org/people/Romariogrande/sounds/370801/
http://u3d.as/84T

K1451760

GORDON JOHNSON 23

23 3D Games Programming

Appendix One - GitHub Commits

K1451760

GORDON JOHNSON 24

24 3D Games Programming

K1451760

GORDON JOHNSON 25

25 3D Games Programming

K1451760

GORDON JOHNSON 26

26 3D Games Programming

K1451760

GORDON JOHNSON 27

27 3D Games Programming

K1451760

GORDON JOHNSON 28

28 3D Games Programming

