

3D Games
Programming
Interaction based Game

Development

Gordon Johnson
K1451760

K1451760

GORDON JOHNSON 1

1 3D Games Programming

Table of Contents
Overview / Links.. 2

Introduction .. 3

Plot ... 3

Tasks to be Implemented ... 4

Instructions ... 6

Interfaces .. 6

Controls .. 8

Understanding the Game Objects ... 10

Techniques / Algorithms / Tools.. 12

Version Control .. 12

The Game Controller .. 12

Player Controller .. 16

NPC Jeeps .. 18

Interaction Mechanisms ... 19

Game Controls Interaction ... 19

Reward Mechanics ... 20

References .. 21

Appendix One – GitHub Commits .. 23

Appendix Two – Game Controller Data Dictionary .. 31

K1451760

GORDON JOHNSON 2

2 3D Games Programming

Overview / Links

Buggy Boy (1985) meets Fastlane: Road to Revenge (2017)

Name: Buggy Boom

Type: Endless Driving, avoid obstacles, defeat enemies, collect rewards and level up.

Theme: Non-realistic, Fantasy Violence

Audience: 12+ Aimed at the younger age group

Technology: Unity3D 2017.2

GitHub: https://github.com/LordGee/buggy_boom

Video: https://youtu.be/LNH09MziiIE

Figure 1 - Inspired by: Buggy Boy (Top Left), Fastlane (Right) and Clicker Hero (Bottom Left)

https://github.com/LordGee/buggy_boom
https://youtu.be/LNH09MziiIE

K1451760

GORDON JOHNSON 3

3 3D Games Programming

Introduction

The proposed game, will be based upon the genre of ‘Endless Runner’. Taking inspiration from

Fastlane, which is a 2D game created by London based company ‘Space Ape’. The objective

of which, is to play for as long as possible whilst avoiding obstacles and destroying enemy cars

along the way, enabling a player to collect in-game cash, gems and level-up. By obtaining

enough cash / gems the player can improve the performance of their car. The retro ‘Buggy

Boy’ game, originally released for the 8-bit generation of computing, provided a behind the car

view (third person view) with similar objectives as the ‘Fastlane game’, such as avoiding

obstacles and collecting bonus points to obtain additional score. Higher points were given for

the bigger flags, these had to be driven through as opposed to over. The final inspiration for

this game is taken from ‘Clicker Hero’, while not a driving game, it utilises a Gamification

feature of levelling and progression, that I will attempt to include into this game.

Using the above titles as inspiration, I propose to make a game that will portray a 3D

perspective, presenting the camera behind the car like in ‘Buggy Boy’. The play surface will

be a flat straight surface, that will represent the ‘Fastlane’ concept and provide obstacles and

action of a similar nature.

Plot

Can you survive the dark, foggy night on the never-ending road? Armed with a trusty projectile

cannon, players battle through the endless hordes of rival vehicles that will stop at nothing to

bring your journey to an end. For each neutralised rival, you will accumulate coins that can be

used to upgrade your vehicle and improve your chances for survival, every penny counts!

Increasing your player level, provides an additional bonus whilst spawning more challenging

rivals. Survive long enough and you may come bumper to bumper with the boss rival, who will

put your driving skills to the test, by firing a volley of projectiles at you. Defeat them before

they defeat you and earn extra bonuses.

K1451760

GORDON JOHNSON 4

4 3D Games Programming

Tasks to be Implemented

The following, has been prioritised using the MoSCoW method. This will be a working

document, as such priorities may change throughout the course of the project:

Must Have:

• A surface which resembles a road. The material offset should be updated to provide

the illusion that the road is moving.

• A buggy (the player pawn). This should be fixed on certain axis, to allow only left

and right movement. Other constraints should apply, to ensure the player remains

within the play space.

• Rival vehicles. These should be spawned in a random road lane, at the opposite end

of the road surface. Updates should include a continuous movement towards the

player. If a player collides with a rival, then the players’ health is reduced.

• Projectiles, so the player can shoot at oncoming rivals. If a projectile collides with a

rival game object, that object will have its health reduced, if the health reaches to

zero or below, then that game object will be destroyed.

• Shredder. A game object should be placed directly behind the player, to catch and

destroy any game objects that pass the players line of sight.

• UI Display. To provide score, health and multiplier statistics.

Should Have:

• Road block objects, to provide an unpassable obstacle. To spawn in rows covering

the road, a condition must be that there is always a safe route through even if that is

just one lane. Road blocks, should not be destroyed by the player and the player

colliding with the road block will trigger an instant game over.

• Additional rival vehicle, which spawn randomly and shoot projectiles back at the

player.

• A layer of fog, that obscures the view of road ahead, providing a challenging field of

view.
• Reward pick-ups, should be spawned when a rival is destroyed. These pick-ups, can

include additional score or repairing tools.

• A game over scene, which displays the game score and the players new running total

score.

• A menu system, to start the game, manage user options (such as volume levels) and

display a running total of score.

K1451760

GORDON JOHNSON 5

5 3D Games Programming

Could Have:

• A boss vehicle, that has a large amount of health to spawn after a period of play time.

The boss should have a different movement mechanic then the rival vehicles. It

should travel towards the player, until a certain point is reached and then remain in

front of the player, performing a side to side movement until it is destroyed.

• Additional rival vehicle that simulates a simple AI, that changes lane towards the

players’ lane location.

• Each rival vehicle, should have a unique material or prefab attached, so the rival type

can easily be visually identified.

• Building objects spawn either side of the play space, providing scenery and depth to

the game.

• The menu scene. To contain a levelling up display, as well as an option to upgrade

the buggies fire power, minimum health and minimum multiplier.

• Animation of the player vehicle, for changing direction and idle positions. This

should include rotation of the vehicle and wheel movement.

Won’t Have:

• Game variables, that are passed from different scenes, should be encrypted to prevent

cheating.

• Access online database to store and retrieve results. These can be used to provide an

online leaderboard of results, creating a competitive game experience.

K1451760

GORDON JOHNSON 6

6 3D Games Programming

Instructions

Interfaces
Upon starting Buggy Boom, you will be presented with a menu screen. This screen displays

several options which include:

Figure 2 - Main Menu

The options menu, provides configurable settings, that will affect in-game experiences. The

music volume, changes the level of the ambient background music, within all scenes of the

game. The SFX volume, changes the level of the sound effects within the game itself. Auto

Fire, provides an option to auto detect when a destroyable enemy is in range and targetable. It

will automatically fire projectiles at the enemy. The Accelerometer option, is available but is

only compatible with accelerometer devices such as a smart phone, it allows the vehicle to be

controlled by rotating the mobile device.

Figure 3 - Options Menu

For any changes to be committed, the ‘Save Settings’ button, must be pressed before

returning to the main menu.

K1451760

GORDON JOHNSON 7

7 3D Games Programming

The Upgrades menu, allows you to upgrade your vehicle, providing you have collected

sufficient money. ‘Fire power’ increases your starting fire power, by 1 point per level

increase, making it easier to destroy stronger opponents as the game progresses. ‘Health’

increases your maximum health by 1 point per level increase, when taking damage, you can

repair to this new higher limit. ‘Multiplier’ increases your minimum multiplier by 0.1x point

per level increase, whenever the multiplier is reset during play, it will now reset to this new

minimum, allowing a player to accumulate addition money.

Figure 4 - Upgrades Menu

The main game view, displays the score multiplier, game score, player health and the players’

buggy position.

Figure 5 - Game Interface

K1451760

GORDON JOHNSON 8

8 3D Games Programming

Controls

There are several methods of controls that can be used to play the game:

Keyboard Control

Figure 6 - Keyboard Controls

Gamepad Control

Figure 7 - Gamepad Controls

K1451760

GORDON JOHNSON 9

9 3D Games Programming

Mobile Device Controls

By default, the mobile controls are set to touch, continuous shooting will also be enabled.

Figure 8 - Mobile Device Controls (Default)

Within the options menu, if the ‘Accelerometer’ is enabled, the following controls will be

applied, continuous shooting will also be enabled.

Figure 9 - Mobile Device Controls (Accelerometer)

K1451760

GORDON JOHNSON 10

10 3D Games Programming

Understanding the Game Objects

The following, provides a persona for each object that can be found within the game:

Who it is What it looks like

The Green Jeep

Drives only in the lane that it was spawned.

Slower speed then player.
Colliding reduces player health.

Destroy for potential bonus.

The Orange Jeep

Drives only in lane that it was spawned.

Randomly, shoots projectiles towards player.

Projectiles, reduce players’ health.

Slower speed then player.

Colliding reduces player health.

Destroy for potential bonus.

The Blue Jeep

Moves towards the players’ current position,

changing one lane at a time.

Slower speed then player.

Colliding reduces player health x2.

Destroy for potential bonus.

The Road Block

Can block up to 5 out of 6 lanes.

Are stationary.

Can’t be destroyed.

Colliding will remove all players’ health.

K1451760

GORDON JOHNSON 11

11 3D Games Programming

Who it is What it looks like

The Boss

Stays in middle of road until close to player.

At set position, will strafe from right to left.

Randomly, shoots projectiles towards player.

Projectiles reduce players’ health.

Will not get close enough to collide with.

Destroy for potential large bonus.

Your Projectiles

Green in colour.

Always fire in a forward facing direction.

Rival Projectiles

Red in colour.

Always fires backwards, in the direction of

the players’ position at the time of

instantiation.

Coins

Collect ‘coins’ for an additional 20 points.

Gold Bars

Collect ‘gold bars’ for an addition 100

points.

Tool Kit

Collect ‘tool kits’, to repair your buggy

health by 5 health points. If the buggy health

is already at maximum or close to it, the

health points are converted into game points.

K1451760

GORDON JOHNSON 12

12 3D Games Programming

Techniques / Algorithms / Tools

Version Control
For this project, I chose to use GitHub to manage all project files. This tool provides a road

map of events, that transpired throughout the implementation of this game. It provides a solid

back up of all relevant game files and changes. This came in handy when an animation broke

the program, as I was able to use the information stored on GitHub, to quickly revert back to a

previous state. A complete record of commits and comments can be found in (Appendix One).

The Game Controller
The ‘Game Controller’ script, forms the heart of the gameplay logic; it manages all general

variables that are required at the start of the game. As a central point, it manages general

functions that have been made

public, allowing them to be quickly

called from other scripts, which in

turn will affect the remainder of the

gameplay.

A form of a data dictionary, of all the

variables managed by the ‘Game

Controller’, can be found in

(Appendix Two) towards the back of

this report.

The ‘Game Controller’, starts its life

in a new game, by declaring set

variables. Some of the initial

calculations, require access to the

player preferences script, in order to

obtain the players upgrade variables.

It then proceeds to the ‘Update’

function, where a switch statement is

used to determine the current game

state. As seen in (figure 10), in order

to perform the appropriate

operations for that game state, the behaviour branches off in three directions.

Figure 10 - Game Controller Behaviour

K1451760

GORDON JOHNSON 13

13 3D Games Programming

The ‘Game Controller’, also contains other functions as described below. The public functions

can be called upon by other scripts, variables within the game controller will be updated as

required.

Damage Player

The ‘Damage Player’ function, takes in one argument, this defines the amount of damage the

player receives. It checks if the player is currently invincible, if not then the players’ health is

reduced by the amount of damage passed into the function, the multiplier is reset to its

minimum value (depending upon upgrades). The invincible Boolean is set to true and a co-

routine is started, this changes back to false after a fifth of a second. The function then checks

if the players’ health has been reduced to zero or less, if this is true then the players’ health is

set to zero for cosmetic purposes and the game state changes to ‘Game Over’. Finally, the game

canvas text is updated with the new values.

 public void DamagePlayer(float _dmg)
 {
 if (!invincible)
 {
 playerHealth -= _dmg;
 playerMultipler = 1 + minMultiplier;
 invincible = !invincible;
 StartCoroutine(PlayerHit());
 }
 if (playerHealth <= 0)
 {
 playerHealth = 0;
 currentyGameState = GAME_STATE.GameOver;
 }
 UpdateHUD();
 }

 private IEnumerator PlayerHit()
 {
 yield return new WaitForSeconds(0.2f);
 invincible = false;
 }

This function is called upon by the ‘Player Controller’ and the ‘NPC Obstacle’ scripts.

K1451760

GORDON JOHNSON 14

14 3D Games Programming

Damage NPC

The ‘Damage NPC’ function, takes in four arguments, the game object itself, the amount of

points, the amount of damage associated with this specific game object and finally a reference

to the game objects health variable. If necessary, the game object can be destroyed from here.

The function first removed the amount of damage from the NPC’s health, because this is a

referenced variable, it will affect the value in the script that called this function. It then checks

if the health is zero or less, if this is true the points are awarded to the players score. Next, the

script checks if the damaged object is a boss (in hindsight, this condition statement can be

improved by using the _obj.tag to check this). If it is a boss, the ‘Spawn Collectables’ function

is executed multiple times, to provide a larger reward compared to defeating a regular rival, a

random range is passed in to minimise objects spawning on top of each other. In order to

increase the challenge, variables are then set for the boss timer and level up. The current spawn

state, is changed back to jeep and an audio clip is set. Outside this statement, the audio clip is

played, an explosion effect is spawned at the objects position and the game object is destroyed.

public void DamageNPC(GameObject _obj, float _pts, float _dmg, ref float _hea)
 {
 _hea -= _dmg;
 if (_hea <= 0)
 {
 AddPoints(_pts);
 if (currentSpawn == SPAWN_NPC.Boss && GameObject.FindWithTag("NPCBoss"))
 {
 for (int i = 0; i < Mathf.Floor(playerMultipler * 5); i++)
 {

 SpawnCollectable(new Vector3(_obj.transform.position.x +
 Random.Range(-2.0f, 2.0f),

_obj.transform.position.y,
_obj.transform.position.z + Random.Range(-2.0f, 2.0f)));

 }
 bossTimer = Time.timeSinceLevelLoad;
 LevelUp();
 progressionTimer = Time.timeSinceLevelLoad;
 currentSpawn = SPAWN_NPC.Jeep;
 audio[0].clip = bigExplosion;
 }
 else
 {
 SpawnCollectable(_obj.transform.position);
 audio[0].clip = smallExplosion;
 }
 audio[0].transform.position = _obj.transform.position;
 audio[0].volume = playerPrefs.GetSfXVolume();
 audio[0].Play();
 NpcDeathEffect(_obj.transform.position);
 Destroy(_obj);
 UpdateHUD();
 }
 }

This function, is called upon by the ‘NPC Obstacle’ and the ‘Boss NPC’ scripts.

K1451760

GORDON JOHNSON 15

15 3D Games Programming

Spawn Collectables

The ‘Spawn Collectables’ function, takes in one argument, the vector position of the soon to

be destroyed game object. This small function, plays a game of chance, where each game object

(which are added to the array in desirability order) has a chance to spawn. On the first iteration

for the coins, if the random number equals 1, then that gets added as the spawn value. On the

second iteration for the gold bars, if the random number equals 1, then the gold bars replace

the coins in the spawn value. However, if the random number is anything else, then the spawn

value is locked with the coins and no other checks matter. By the end of the iterations,

whichever object the spawn value indicates to, will get created. Due to this, it is possible for

the spawn value to remain at -1, which will not spawn anything.

 private void SpawnCollectable(Vector3 pos)
 {
 int spawnValue = -1;
 bool next = true;
 for (int i = 0; i < collectables.Length; i++)
 {
 if (Random.Range(0, 2) == 1 && next)
 {
 spawnValue = i;
 }
 else
 {
 next = false;
 }
 }
 if (spawnValue != -1)
 {
 Instantiate(collectables[spawnValue], pos, Quaternion.identity);
 }
 }

K1451760

GORDON JOHNSON 16

16 3D Games Programming

Player Controller

The ‘Player Controller’ script, manages all interaction between the player and the game. Its

primary function, is to determine the correct control schema to use and to execute the

appropriate methods for that scheme. Through searching (Unity Docs, 2017), there was an

interesting way to identify the build platform of the project, this allowed statements to be set

based on the build, and to define which appropriate control mechanics to use. So if the build

was compiled for a mobile device, then during the ‘Update’, the correct control function for a

mobile device would be executed.

 void Update ()
 {
#if UNITY_EDITOR
 StandardBuilds();
#endif

#if UNITY_PS4
 PS4Builds();
#endif

#if UNITY_IOS
 MobileBuilds();
#endif

#if UNITY_ANDROID
 MobileBuilds();
#endif

#if UNITY_WEBGL
 StandardBuilds();
#endif

#if UNITY_STANDALONE_WIN
 StandardBuilds();
#endif

 }

K1451760

GORDON JOHNSON 17

17 3D Games Programming

Check Buggy Rotation

This function, originally began with the idea that when the player moves the buggy left or right,

the buggy itself would rotate. This later changed to being managed by the animator, this

provided much smother and more realistic movement of the buggy. It was set up, to ensure all

changing states could be actioned from any position, returning to idle when no longer

necessary. The entry for the three states, is determined by parameter Booleans. In hindsight,

for the left and right animation, these could have been set as a float, based on the horizontal

user input.

The script that handles this parameter, simply determines if the input value is a positive or

negative value and sets the Booleans accordingly. After this is done, it checks for any

constraints on the movement, such as if the player is going out of bounds and if so constricts

this movement.

 private void CheckBuggyRotation(float _direction)
 {
 if (_direction != 0)
 {
 // transform.Rotate(0f, GetTranslatedPosition(buggySpeedRot), 0f);
 if (_direction > 0)
 {
 anim.SetBool("TurnRight", true);
 anim.SetBool("TurnLeft", false);
 }
 else if (_direction < 0)
 {
 anim.SetBool("TurnRight", false);
 anim.SetBool("TurnLeft", true);
 }
 }
 else
 {
 // transform.Rotate(0f, GetTranslatedPosition(transform.rotation.y * -1,
buggySpeedRot * 20f), 0f);
 anim.SetBool("TurnRight", false);
 anim.SetBool("TurnLeft", false);
 }
 CheckPositioningConstraints();
 }

K1451760

GORDON JOHNSON 18

18 3D Games Programming

NPC Jeeps
The ‘Jeep’ script deals with all three types of Jeeps. A randomly generated value, determines

which Jeep is created. Once decided, variables are configured for this type of Jeep, allocated

its unique attributes. With the exception of the standard green Jeep, which just does a standard

movement, the update checks for an action timer. If the time has reached a set frequency, then

the script will check if the Jeep is a shooter. If it is, it will shoot a projectile in the direction of

the players’ position, at the time of the projectile being instantiated.

if (Time.timeSinceLevelLoad - actionTimer > actionFreq)
 {
 if (shooter)
 {
 ShootProjectile();
 audio.Play();
 }
 else if (changer)
 {
 currentIndex = FindCurrentIndex(transform.position.x, minMaxPos);
 playerIndex = FindCurrentIndex(player.gameObject.transform.position.x,
 minMaxPos);

 if (playerIndex < currentIndex)
 {
 changerMoveCount = -2f;
 }
 else if (playerIndex > currentIndex)
 {
 changerMoveCount = 2f;
 }
 }
 actionTimer = Time.timeSinceLevelLoad;
 actionFreq = Random.Range(minAction, maxAction);
 }
 if (changerMoveCount < -0.1f)
 {
 moverScript.ChangeLane(Vector3.left.x * 0.1f);
 changerMoveCount += 0.1f;
 }
 else if (changerMoveCount > 0.1f)
 {
 moverScript.ChangeLane(Vector3.right.x * 0.1f);
 changerMoveCount -= 0.1f;
 }
 else
 {
 moverScript.ChangeLane(0f);
 }

To simulate an artificial intelligence within the game, at random intervals the Changer Jeep

will change its position, to a lane one closer to the players’ position. This is done by calculating

the player and Jeep positions, within the lane array returning the index value. From this, the

Jeep can work out which direction to travel in next. The distance between each lane is 2 points

on the X axis. I used a counter, to gradually spoon feed the script that controls the Jeep

movement, an incremental amount until the counter returned to zero. This allowed the Jeep to

finish moving, once 2 points in total had been passed through.

K1451760

GORDON JOHNSON 19

19 3D Games Programming

Interaction Mechanisms

Game Controls Interaction
For this game, I wanted to try and include as many appropriate control interfaces, as reasonably

possible. Initially starting with the keyboard mechanics, which just required three keys and the

mouse, for navigating the menu systems. Having tested the game with a gamepad, I found that

the menu system was inactive and unable to start the game. In the Inspector of the ‘Event

System’, I found an option called ‘First Selected’ that takes in a game object, I declared this as

the ‘Start’ button. This presented the start button as already highlighted and was able to start

the game. However, navigating was not intuitive and only some buttons were able to be

navigated to. Returning to the inspector, I found

that there was an explicit navigation option to

enforce which button are select next, if the user

moves in a specific direction. This fixed the

issue and I was able to fully navigate all of the

menu options.

When tested on the PS4 development kit, the navigation failed again, with no starting button

highlighted at all. After some searching, I found another option in the Inspector, for the ‘Event

System’ object, this was displayed as ‘Force Module Active’. After checking this box, the

navigation seemed to come alive again. However, this lead to another problem, if the PS4

controllers track pad was accidently touched,

then the selected button became lost and no

longer retrievable without restarting the game.

After spending some time trying remedy this

issue, I settled for creating a ‘Reset’ button, so

if this was to happen, pressing the circle button

on the controller would reset the menu to its default state.

When testing on a mobile device, the touch mechanics appeared to work well. With only some

minor code changes required, to ensure projectiles are constantly firing. The game on the

mobile device, was very jumpy and not very responsive, but I believe that was due to the very

old android device I was using. Testing the ‘Accelerometer’, on this device proved very

difficult. The vehicle appeared to move at a very slow pace compared to when using other

control methods. It appears that the movement speed of the vehicle, would need to be doubled

to make this an effective control method. Unfortunately, I have been unable to get a connection

with this device since, so have been unable to test it again.

Figure 12 - Force Module Active was required to be checked

Figure 11 - Explicit navigation options

K1451760

GORDON JOHNSON 20

20 3D Games Programming

Reward Mechanics
As stated previously, I wanted to include a reward scheme in order to improve the chance of

repeat play. I implemented the ‘Game Score’, as a currency that can be accumulated every time

the person plays. Also stored is the overall accumulation, regardless of spend, it is this value

that determines the player game level. Currently this is calculated for every 10,000 accumulated

increases, the players level up by 1 point. For future improvement, this calculation is

incremented for each level that’s passed, so 20,000 = Level 2, 40,000 = Level 3, 80,000 = Level

4, and so on. The level number, will play an intricate role in how challenging the game is. In

order to make the game achievable, the player also needs some benefit to offset the greater

challenge.

The ‘Upgrades’ menu system, enables the player to upgrade certain attributes of the vehicle

and gameplay. For 10,000 the player can upgrade the ‘Fire Power’, this increases the damage

dealt by the player, by 1 point. 50,000

upgrades the players’ maximum

health by 1 point. With 250,000

upgrading the player minimum

multiplier by 0.1 point.

This provides the player with

achievable goals to aim for, whilst

still finding the game more

challenging as they progress, with

upgrading of the vehicle to offset

some of the difficulty.

As a future improvement, I would like to look into a more appropriate method of storing these

variables, without utilising the ‘Player Preferences’, as these can be easily accessed and

manipulated. Although having the ability to manipulate these variables was beneficial during

the testing period.

Figure 13 - Upgrade menu system

K1451760

GORDON JOHNSON 21

21 3D Games Programming

References

Audio Assets

Pogmog (2017) Money Collect 2. Available at:

http://freesound.org/people/Pogmog/sounds/393911/ (Accessed: 21 October 2017)

Guest (2016) Cha Ching.wav. Available at: http://freesound.org/people/guest/sounds/351304/

(Accessed: 21 October 2017)

Creek23 (2013) cha ching.wav. Available at:

http://freesound.org/people/creek23/sounds/75235/ (Accessed: 21 October 2017)

Fins (2012) laser. Available at: http://freesound.org/people/fins/sounds/146725/ (Accessed:

21 October 2017)

KenRT (2015) Rachet.wav. Available at: http://freesound.org/people/KenRT/sounds/319996/

(Accessed: 21 October 2017)

Cyberlogical (2017) Music Starter Kit. Available at: http://u3d.as/tJj (Accessed: 21 October

2017)

Moonflower Carnivore (2016) Fantasy SFX for Particle Distort Texture Effect Library.

Available at: http://u3d.as/i8W (Accessed: 21 October 2017)

Glitch (2012) Glitch. Available at: http://www.glitchthegame.com (Accessed: 22 October

2017)

3D Model Assets

15/10

UltimateArcade (2014) Toon Sports Car. Available at: http://u3d.as/6Dw (Accessed: 07

October 2017)

Cactuscreatives Pvt. Ltd. (2014) Car. Available at: http://u3d.as/8Er (Accessed: 07 October

2017)

br3n065 (2016) Sandrail (Dune Buggy). Available at: http://u3d.as/5K3 (Accessed: 14

October 2017)

RK.Team (2017) Modular Road Block [FREE]. Available at: http://u3d.as/Nt5 (Accessed: 15

October 2017)

Mister Necturus (2016) Medieval Gold. Available at: http://u3d.as/6ce (Accessed: 17 October

2017)

Ilias Kap (2017) Workplace Tools. Available at: http://u3d.as/MvD (Accessed: 18 October

2017)

ZugZug Art (2017) Cartoon Monster Truck. Available at: http://u3d.as/j91 (Accessed: 21

October 2017)

http://freesound.org/people/Pogmog/sounds/393911/
http://freesound.org/people/guest/sounds/351304/
http://freesound.org/people/creek23/sounds/75235/
http://freesound.org/people/fins/sounds/146725/
http://freesound.org/people/KenRT/sounds/319996/
http://u3d.as/tJj
http://u3d.as/i8W
http://www.glitchthegame.com/
http://u3d.as/6Dw
http://u3d.as/8Er
http://u3d.as/5K3
http://u3d.as/Nt5
http://u3d.as/6ce
http://u3d.as/MvD
http://u3d.as/j91

K1451760

GORDON JOHNSON 22

22 3D Games Programming

LowlyPoly (2017) Simple Houses Lite. Available at: http://u3d.as/Fny (Accessed: 22 October

2017)

Texture / Materials / Skybox/ 2D Assets

Dmitriy Chugai (2013) Seamless road texture. Available at:

http://texturelib.com/texture/?path=/Textures/road/road/road_road_0021 (Accessed: 07

October 2017)

GameWarming (2016) Autumn Mountain. Available at: http://u3d.as/mZv (Accessed: 07

October 2017)

Arctic_Foto (2015) Off-road-rally-buggy-race-offroad. Available at:

https://pixabay.com/en/off-road-rally-buggy-race-offroad-1917039/ (Accessed: 22 October

2017)

Francisco Morais (2016) Black Top Road Under Clear Blue Cloudy Sky. Available at:

https://www.pexels.com/photo/dessert-roadtrip-nevada-united-states-90633/ (Accessed: 22

October 2017)

OpenClipart-Vectors (2013) Banknotes-bankroll-bill-money. Available at:

https://pixabay.com/en/banknotes-bankroll-bill-money-159085/ (Accessed: 24 October 2017)

Qianyuez (2016) Free Night Sky. Available at: http://u3d.as/G26 (Accessed: 25 October

2017)

Fonts

Bou Fonts (2009) Score Board. Available at: https://www.dafont.com/score-board.font

(Accessed: 14 October 2017)

Woodcutter (2015) Scoreboard. Available at: https://www.dafont.com/scoreboard.font

(Accessed: 14 October 2017)

Jonathan Paterson (2016) Boom Box. Available at: https://www.dafont.com/boom-box.font

(Accessed: 22 October 2017)

Coding References

Unity Docs (2017) Random.ColorHSV. Available at:

https://docs.unity3d.com/ScriptReference/Random.ColorHSV.html (Accessed: 07 October

2017)

Unity Docs (2017) Platform dependent compilation. Available at:

https://docs.unity3d.com/Manual/PlatformDependentCompilation.html (Accessed: 07

October 2017)

http://texturelib.com/texture/?path=/Textures/road/road/road_road_0021
http://u3d.as/mZv
https://pixabay.com/en/off-road-rally-buggy-race-offroad-1917039/
https://www.pexels.com/photo/dessert-roadtrip-nevada-united-states-90633/
https://pixabay.com/en/banknotes-bankroll-bill-money-159085/
http://u3d.as/G26
https://www.dafont.com/score-board.font
https://www.dafont.com/scoreboard.font
https://www.dafont.com/boom-box.font
https://docs.unity3d.com/ScriptReference/Random.ColorHSV.html
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html

K1451760

GORDON JOHNSON 23

23 3D Games Programming

Appendix One – GitHub Commits

K1451760

GORDON JOHNSON 24

24 3D Games Programming

K1451760

GORDON JOHNSON 25

25 3D Games Programming

K1451760

GORDON JOHNSON 26

26 3D Games Programming

K1451760

GORDON JOHNSON 27

27 3D Games Programming

K1451760

GORDON JOHNSON 28

28 3D Games Programming

K1451760

GORDON JOHNSON 29

29 3D Games Programming

K1451760

GORDON JOHNSON 30

30 3D Games Programming

K1451760

GORDON JOHNSON 31

31 3D Games Programming

Appendix Two – Game Controller Data Dictionary

Public Variables

Name Data Type Start Value Description

playerHealth Float 100 Stores and manages

the players overall

health.

playerDamage Float 10 Defines how much

damage a player will

do to a rival vehicle.

npcGameObjects Game Object Array Set in Unity

inspector

Stores game objects

that are used by the

spawn script by

calling the Get

function.

npcJeepHealth Float 10 Health that the Jeep

starts with.

npcJeepDamage Float 4 Damage caused by

Jeep either collision

or projectile

damage.

npcJeepSpeed Float 10 Speed that the jeep

translates its new

position.

npcJeepPoints Float 100 How many points

are rewarded for

defeating a Jeep.

npcBlockHealth Float 999999 Health that the Road

Block starts with.

npcBlockDamage Float 999999 Damage caused by

Road Block though

collision damage.

npcBlockSpeed Float 12 Speed that the jeep

translates its new

position.

npcBlockPoints Float 0 How many points

are rewarded for

defeating a Road

Block, which should

never happen

anyway.

npcMonsterHealth Float 1000 Health that the Boss

starts with.

npcMonsterDamage Float 5 Damage caused by

Boss through

projectile damage.

K1451760

GORDON JOHNSON 32

32 3D Games Programming

npcMonsterSpeed Float 5 Speed that the Boss

translates its new

position.

npcMonsterPoints Float 1000 How many points

are rewarded for

defeating a boss.

SPAWN_NPC Enumeration Jeep, Block, Boss Sets the values of

the various Spawn

States.

currentSpawn SPAWN_NPC Jeep Defines the current

spawn state during

play.

GAME_STATE Enumeration Playing, Paused,

GameOver

Sets the values of

the various Game

States.

currentGameState GAME_STATE Playing Defines the current

game state during

play.

collectables Game Object Array Set in Unity

inspector

Game object

prefabs, such as

coins bars and repair

tools are stored here.

explodeEffect Game Object Set in Unity

inspector

Game object

prefabs, to simulate

an explosion effect

using the particle

system is stored

here.

smallExplosion Audio Clip Set in Unity

inspector

Audio file that will

play a small

explosion sound

when required.

bigExplosion Audio Clip Set in Unity

inspector

Audio file that will

play a large

explosion sound

when required.

Private Variables

Name Data

Type

Start Value Description

playerScore Float 0 Stores the current score for

this game.

playerMultiplier Float 1 Stores the current multiplier

and is used to calculate

points added to the players

score.

playerPoints Float 100 Obsolete. Originally a

default score value, this is

K1451760

GORDON JOHNSON 33

33 3D Games Programming

now defined in specific

game objects.

invincible Boolean False After colliding with a

damaging object, there is a

short time where the player

is invincible.

doThisOnce Boolean False In the game over sequence,

there is a set of variables

that need to be defined only

once. This Boolean

enforces that constraint.

playerController Player

Controller

 Provides quick access to the

player controller class.

maxHealth Float Value retrieved

from player

preferences

Stores the upgraded value

that is stored in the player

preferences.

minMultipler Float Value retrieved

from player

preferences

Stores the upgraded value

that is stored in the player

preferences.

upgradedDamage Float Value retrieved

from player

preferences

Stores the upgraded value

that is stored in the player

preferences.

bossTimer Float 0 Defines the last time the

boss was defeated or the

start of the game.

bossCountdown Float 120 Interval from the start of the

time until the spawn state

changes to indicate that the

next spawn should be Boss.

roadLaneArray Integer

Array

-3, -1, 1, 3 Defines the X position of

each road lane, excluding

pavements.

fullLaneArray Integer

Array

-5, -3, -1, 1, 3, 5 Defines the X position of

each lane, including

pavements.

bossLaneArray Integer

Array

0 This array only has one

value, but is kept as an

array so it can still use of an

already existing function.

progressionTimer Float 0 Defines the last time the

next wave update was

executed or the start of the

game.

progressionCountdown Float 10 Interval from the start of the

timer until the next wave

update is executed.

progressionIncrementer Float 0.8 Each next wave update

increments game values by

this amount.

K1451760

GORDON JOHNSON 34

34 3D Games Programming

maxSpeed Constant

Float

20 Defines that maximum NPC

speed.

scoreDisplay Text Manipulates the text on the

canvas when an update is

required.

multiDisplay Text Manipulates the text on the

canvas when an update is

required.

healthDisplay Text Manipulates the text on the

canvas when an update is

required.

audio Audio

Source

Array

Gets all attached

audio source

components

Several audio sources

where used to prevent

cutting other game sounds

off.

playerPrefs Player

Prefs

Control

Script

 Provides quick access to the

player preferences class and

all the get and set functions.

